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Synopsis Many biological systems across scales of size and complexity exhibit a time-varying complex network structure

that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some

intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A

wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein

interaction networks that govern physiology and metabolism, and neural networks that store and convey information to

networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and

networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is

amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and

dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of lon-

gitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the

dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other bio-

logical systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a

result of the need for the biological system to cope with for example invaders or new information flows. The confluence

of these developments renders tractable the question of how the structure of biological networks predicts and controls

network dynamics. In particular, there may be structural features that result in homeostatic networks with specific

higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resil-

ience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in

structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological net-

works with their function, positioning them on the spectrum of time-evolving network structure, that is, dynamics of

networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our

ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of

anthropogenic changes to the environment that affect life across the gamut of organizational scales.
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Introduction

Nature presents us with an overwhelming plenitude

of structures, the functions of which are so diverse as

to suggest descriptive rules pertaining to structural–

functional relationships are highly specialized.

Exclusive to one or another specific domain of bio-

logical science, structure manifests in genes and de-

velopment, neural circuits and integration, metabolic

pathways and trophic interactions, to mention just a

few. Here we attempt to address an overarching

question: whether multifarious descriptions of inter-

actions within defined biological domains find pre-

cision and unification using a language that

identifies commonality of organization across all bi-

ological domains and scales. In terms of its overall

structure and dynamics might each domain present

an underlying organization that suggests a universal

principle of interactive connectivity across its com-

ponents such that, for example, structural and dy-

namic interactions of elements within a defined

ecology can be described using the same mathemat-

ical rules as those that describe structural and dy-

namic interactions of, for example, a defined part of

the brain, or the genomic organization of tissue

differentiation.

Biological systems can be decomposed into

parts—components that combine with other compo-

nents to make up a whole (Simon 1962). When parts

interact with other parts of the system their interac-

tions are constrained by space, time, information

flows (including processing, transfer, and storage),

and/or function, all of which are influenced by the

external environment. Interactions are usually mod-

eled with graphs, mathematical constructs that con-

nect points known as vertices with lines (Barab�asi

and Oltvai 2004). Figure 1A describes the anatomy

of a network. Vertices represent parts of a system

and lines represent pairwise interactions between

them. For example, a graph describing the combina-

tion of structural domains in multidomain proteins

will connect vertices describing structural domains

with lines describing the presence of domains in

proteins (Aziz and Caetano-Anoll�es 2021). When

connections of vertices are undirected, lines fail to

point in any direction; each connection involves an

unordered pair of (end) vertices. These lines are

called edges. When connections are directed, lines

point in one direction; each connection involves an

ordered pair of vertices (an initial vertex and a ter-

minal vertex). These lines are called arcs. Graphs

become networks whenever value functions (proper-

ties or weights) are mapped onto the vertices and

lines of the graphs. For consistency, we will call the

vertices of the network nodes and the lines that con-

nect the vertices the links of the networks.

Some network properties help visualize and study

network structure and makeup (Wasserman and

Faust 1994; Newman 2003). A network can be rep-

resented with an adjacency matrix, a square matrix

used to describe a finite graph, a property that is

useful for spectral graph theoretical applications

(Fig. 1B). The matrix becomes asymmetric when

links are directed. Networks can be studied with

measures of network centrality, by detecting commu-

nity structure, or by dissecting their makeup.

Measures of network centrality estimate how a node

or link influences the connectivity or information

flow of the network (Fig. 1C). Detecting community

structure allows to establish groups of nodes that are

more connected with themselves than with the rest.

We will refer to these communities as “modules.” A

number of hierarchical clustering algorithms can ef-

ficiently detect these network modules, including the

popular Girvan–Newman algorithm (Girvan and

Newman 2002). Other useful algorithms include

those that maximize modularity functions, extract

information through random walks (e.g., infomap

algorithm), use recursive percolation methods, or

analyze fractal geometric (Xue and Bogdan 2017)

and differential geometric (Sia et al. 2019) character-

istics of complex networks. Finally, compositional

patterns such as network motifs or network cliques

can highlight elemental units of network makeup,

which can become useful when studying the evolu-

tion of function in network structure. However,

given the intrinsic stochasticity, nonergodicity, and

continuous interaction with the environment, the

network motifs can vary over space and time scales,

yet they can explain how biological systems self-

program and self-optimize to achieve the collective

goal (e.g., adaptation for maximizing survival, energy

efficiency, and persistence).

As expected from complex systems, network

abstractions in biology are often difficult to under-

stand: (i) Complexity: Networks can be structurally

complex when their wiring diagrams become tangles

(e.g., multiple rules govern network responses to en-

vironmental perturbations); (ii) Connectivity: Links

between nodes can have different weights, directions,

and signs and can describe different kinds of inter-

actions (e.g., link communities describing different

classes of biological functions); (iii) Diversity:

Nodes and links can be diverse (e.g., biochemical

networks that control cell division consist of a vari-

ety of substrates and enzymes); (iv) Evolution: The

structure and dynamics of networks change when

they grow and their wiring diagrams unfold in

P. Bogdan et al.1992
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time (e.g., effects of canalization on network dynam-

ics); and (v) Dynamics: Nodes and links can them-

selves portray non-linear and long-range memory/

multifractal dynamic behaviors. The state of each

node or link can vary in time in complicated ways

in order to ensure a common collective goal unfolds

in a decentralized way.

While complex, diverse, and evolving networks

can effectively describe how parts are connected to

each other in natural systems, the correct definition

of a biological part becomes central to the network

modeling exercise. For example, structural domains

are considered “units” of protein structure that

are useful for the taxonomical classification of the

world of proteins (Caetano-Anoll�es et al. 2009).

Domains represent arrangements of elements of sec-

ondary structure that fold into well-packed and

compact structural units of the polypeptide chain.

Domains are also functional modules. They fold

and function largely independently, contribute to

overall protein stability by establishing a multiplicity

of intramolecular interactions, and generally host

specific molecular functions. More importantly,

domains are also evolutionary units. They have

been shown to be evolutionarily conserved and pre-

sent in different molecular and functional contexts

throughout the protein world. However, defining

domains in proteins is not a trivial endeavor.

Advanced machine learning methodologies of struc-

tural recognition, such as hidden Markov models

(HMMs) (Eddy 2004), have been effectively used

to catalog domains with automatic and manual cura-

tion approaches. However, not all domains fold into

discrete structural entities within the space of possi-

ble folds (Harrison et al. 2002). Some popular

domains overlap within a continuum. This

“gregariousness” makes it difficult to classify the

folds of certain domain structures, demanding in-

stead the use of super-secondary structural motifs

(e.g., b-hairpins) as lower-level classification tools.

These kinds of difficulties make constructing net-

works difficult when “units” cannot be consistently

Fig. 1. A network view of biological systems. (A) An anatomical analysis shows that a network N is a combination of four sets, a set V

of vertices (nodes), a set L of lines (links), and sets of vertex and line value functions that are mapped onto the V and L sets,

respectively. Each line is associated with a pair of vertices (lines are two-element subsets of V) representing edges or arcs if lines are

undirected or directed, respectively. Loops are lines with identical endpoints. The illustrated network is a “mixed network” because it

contains both arcs and edges. (B) A network can be represented with an adjacency matrix. The example network is undirected (it does

not contain arcs). Consequently, its adjacency matrix is symmetric. (C) Network centralities offer different views of the influence of

nodes in a network. Degree centrality estimates how well a node is connected to other nodes. The degree of a node (its connections)

provides a local view of network connectivity. Closeness centrality estimates how easy is for a node to reach other nodes. Finally,

betweenness centrality estimates how important is a node in terms of its capacity to connect to other nodes. It offers a global view of

connectivity. Other centralities (not shown) offer views of prestige, how important is a node in terms of the importance of its

neighbors. Diagram modified from Caetano-Anoll�es et al. (2021).
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defined or when they “skip” levels of structural or-

ganization. Luckily, artificial intelligence (AI) algo-

rithms are becoming more powerful and are

facilitating the classification task. AI systems learn

from data and can enhance themselves by learning

new heuristics or re-write supporting algorithms.

These emerging strategies include ensemble learning

methods such as Bayesian network approaches (e.g.,

model averaging and optimal classifiers), bagging

classifiers (e.g., random decision forests), and stacked

generalization methods that build predictive models

by iterative integration (Rokash 2011). The challenge

however is to bring an evolutionary rationale to

computational advances, especially because units

must be evolutionary for them to make sense in bi-

ology. In addition, there is real “fuzziness” in natural

systems, which goes beyond the experimenter defini-

tion of nodes and links. This difficulty needs to be

appropriately addressed and represents a significant

barrier to integrating structure and function at dif-

ferent scales. Finally, fuzziness in node definitions

may be inherent to the biological scale of observa-

tion and perhaps can be perturbed and measured.

This could bring a measure of rationality to the

“biological parts as units” problem of constructing

networks.

Network dynamics is also difficult to explore.

Network dynamics is made explicit when matter, en-

ergy, information and time flow through the net-

work structure. These flows can be expressed in

different ways, including cost, Shannon entropy,

time directionality, and higher-order network statis-

tics (Xue and Bogdan 2017). These “flow networks”

pose important conceptual and computational chal-

lenges. For example, directed networks, which induce

directed connections (arcs), also induce input and

output connectivity and the formation of internally

connected subnetworks (cycles) that bias hierarchical

structure. Moreover, the directed flows in these net-

works are not only time varying, but also possess

multifractal characteristics. For example, the dynam-

ics between sets of genes and linked transcription

factors in gene regulatory networks exhibit fractal

and long-range cross-correlated characteristics

(Ghorbani et al. 2018). This implies that when a

biological network is analyzed at two different time

scales, its corresponding directed flow network can

dramatically differ because the system is trying to

concurrently process information and achieve multi-

ple (rich) functionalities with a potentially reduced/

compressed set or rules. These cross-correlation

exponents characterizing for example the interaction

between a gene (or more genes) and a transcription

factor (or more transcription factors) in gene

regulatory networks are not unique and could ex-

plain the functionality achieved by a network motif

or subnetwork. Also, the distribution of the cross-

correlation exponents of gene regulatory networks

for several types of cells can be interpreted as a mea-

sure of the complexity of their functional behavior.

Consequently, one can wonder how information

processing, transfer, and storage triggers the emer-

gence of rules that govern the evolution of a time

varying network by addition, rewiring, and deletion

of nodes and links. Within this network dynamics

paradigm, when aiming to understand and explain

biological systems, one also requires mathematical

tools to reconstruct the network structure while

overcoming partial observability and “perturbation”

influences from other biological systems and envi-

ronments. Since the interplay of network structure

and levels of organization in biology is a crucial en-

deavor, studying these flow networks can uncover

important regularities and principles for designing

self-programming and self-optimizing synthetic bio-

logical systems.

Grand challenge

Time varying complex network abstractions provide

a comprehensive graph theoretical framework with

which to describe biological systems across spatio-

temporal scales and levels of organization

(Caetano-Anoll�es et al. 2019, 2021). One important

goal is to develop and rely on mathematical models

and rigorous algorithmic tools to decipher time

varying complex networks from heterogeneous bio-

logical measurements while overcoming challenges

related to partial observability and “perturbation”

influences (Bogdan 2019; Gupta et al. 2019).

Another important goal is to mine the spatiotempo-

ral geometry and the higher-order network statistics

of time varying complex networks in order to find

patterns, rules, processes, and models of computa-

tion (i.e., specific concurrent interplay among rules

and processes) embedded in the network structure

and dynamics that would help identify common or-

ganizing principles (Koorehdavoudi and Bogdan

2016; Mahmoodi et al. 2017; Balaban et al. 2018;

Kim et al. 2019). Experimental and retrodictive ex-

ploration can then test theoretical frameworks and

predictions. Advances in comparative and evolution-

ary genomics, physiology, and systems and synthetic

biology can help address a number of important

questions and provide potential solutions to the plu-

ralistic and multiscale complexity of biological sys-

tems. For example, phylogenomic analyses can help

uncover how evolution tailors the structure and

P. Bogdan et al.1994
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function of biological networks during billions of

years of natural history (Aziz et al. 2016; Caetano-

Anoll�es et al. 2019; Mughal and Caetano-Anoll�es

2019; Aziz and Caetano-Anoll�es 2021).

Objectives

The following objectives illustrate the broad scope of

inquiry of our framework:

Finding commonalities in network structure

across levels of organization: Simulated and real net-

works at different levels of organization could be

compared in search for commonalities in their struc-

tural makeup and dynamics that could uncover or-

ganizing principles. As one example, directed

networks such as the World Wide Web (WWW)

and metabolism show a bow–tie structure, in which

inputs into a highly connected component result in a

number of outputs (Fig. 2). Depending on the net-

works, there will be also shunts of connectivity and

disconnected components that add complexity to the

makeup of these networks. Are these properties uni-

versal? Can they be studied at different levels of

organization?

Quantifying characteristics of dynamics on the

networks to find commonalities or diversities across

different types or scale of networks: To find organiz-

ing principles governing different types of networks

across different scales, commonalities in structural

and dynamic characteristics of the networks should

be studied. One of the most distinct dynamical char-

acteristics of biological systems is criticality. When a

system is perturbed by external inputs, the perturba-

tion may be amplified and percolated to the entire

system or can have local influence, may manifest

over some specific scales, or may vanish after some

time. A system for the former and the latter is con-

sidered in chaotic and stable regime, respectively.

Many biological systems lie between these two

regimes, that is, near critical point (Daniels et al.

2018). In other words, local perturbation or signal

in the biological networks is preserved in the net-

works. Is it possible that the dynamics of evolving

networks may share commonalities or can be char-

acterized into different classes?

Integrating the network system with external in-

formation: Systems are not isolated but depend on a

superseding environment and other systems. This ex-

ternal integration needs to be resolved and analyzed.

One way to assess integration space is to bind net-

works with external information such as physical or

functional constraints and ask how hierarchy, mod-

ularity, and other structural or dynamic properties

unfold under those conditions. One interesting line

of exploration that highlights integration space is the

study of Rentian scaling of networks (Bassett et al.

2010; Ho and Navlakha 2018). In the 1960s, IBM

scientist E.F. Rent discovered a peculiar scaling rela-

tionship between the number of logic gates (internal

components acting as network nodes) in a logical

block of a computer circuit (a piece of circuit resem-

bling a network module) and the number of circuit

connections between circuit blocks (Landman and

Russo 1971). This empirical relationship followed a

power law with an exponent that generally ranged

0.5< P< 0.8, the Rent’s exponent. Circuits with

larger logical capacity have higher exponents.

Rentian scaling relationships are robust for very

large-scale integrated circuits and a number of bio-

logical networks, including neural networks. Are

these scaling relationships present in networks that

are spatially bound to lower degrees such as metab-

olism or protein–protein interactions networks?

Since biological systems are not isolated, are we to

expect that the effects of integration space be

Fig. 2. The bow–tie hierarchical structure of directed networks. These networks have a giant strongly connected component (Gs),

giant “in” component (Gin), giant “out” component (Gout), tendrils and tubes (T), and disconnected components (D). The number of

nodes that are present in these subgraphs are listed (in blue) as millions of web resources for the WWW (Broder et al. 2000) and as

connected enzymes in the metabolic networks of Escherichia coli (Ma and Zeng 2003). Note that metabolism lacks tendrils and tubes.

Biological networks across scales 1995
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pervasive? This poses the additional challenge of an-

alyzing the structure and dynamics of the integration

space that wires network systems to each other.

Modes of network structure and dynamics:

Morphospaces can help dissect network structure

and dynamics. Morphospaces are phenotypic spaces

defined by a limited number of properties that ac-

count for the most salient features of a system

(Niklas et al. 1994; Shoval et al. 2012). However,

there is likely a multidimensional space of significant

drivers of network structure and dynamics that must

be uncovered. Novel deep-learning classification

tools should be used to find relevant summary

descriptors that are meaningful across systems.

Networks do exhibit different densities, connectivity

patterns, modularity levels, hierarchical organization,

and granularity, all of which could provide charac-

teristics that may be unique to individual levels of

organization in biology.

Deciphering and unfolding networks in time:

Changes of network structure and dynamics can be

studied along different timeframes and biological

scales in a number of fundamental steps. The first

step concerns the definition of entities (nodes) and

connectivities (links), as well as rigorous computa-

tional and mathematical techniques for identifying

them for each biological system while considering

technological and physics-based limitations (e.g.,

causal influence detection, measuring signaling, and

Heisenberg uncertainty principle). Once nodes and

links are defined, the second step consists of carefully

analyzing the scarce biological sampling in order to

construct a history (trajectory) of various interde-

pendent biological networks (e.g., involving the de-

velopment, physiology, metabolite dynamics, and

structural dynamics) that unfold over multiple time

scales (i.e., including manageable timeframes from

years to minutes to nanoseconds). For example,

such time varying networks include those that de-

scribe gene expression patterns, signaling networks,

developmental networks, the photosynthetic light

harvesting complexes, food webs, and neural net-

works. Moving at higher scales of the hierarchical

organization, we need to rigorously sample the

niches and populations in order to define and pre-

dict the history of ecological networks, as well as

study and control their dynamics. Consequently,

we need to develop new mathematical and algorith-

mic techniques capable to using and mining phylo-

genetic, phylogenomic, or stratigraphic information

in order to reconstruct the history of biological net-

works that describe evolving molecular machinery

(e.g., proteome, metabolome, functionomes, signal-

ing networks, protein–protein interactions, and

domain organization) or genes that encode this ma-

chinery. Most of these networks hold very deep evo-

lutionary history and could provide new models of

computation that biology could have discovered

through evolution and inspire new trends in AI

computations. A crucial step toward understanding

the intelligence and the nature of optimization tak-

ing place in biology requires the investigation of the

structure of evolving networks, elucidating the sour-

ces, means, and goals of specific network properties

(including scale-freeness, randomicity, modularity,

hierarchy, centralities, generalized fractal dimension,

multifractal connectivities, and network curvature).

Within this effort, the modeling of network growth

and dynamics must be done according to different

criteria. For example, one can use a “morphospace”

of networks where modularity, hierarchy, and dy-

namics are made explicit (see below) to study sim-

ulated and real networks. Moreover, in order to

overcome the inherent variability and stochasticity

of biological systems, one can rely on characterizing

the multifractal properties for establishing rigorous

connections between various time varying network

motifs and specific rules of life. Another important

step toward characterizing the phase transitions of

biological systems and predicting their future inter-

dependent dynamics requires an accurate tracing of

their dynamics along evolving networks by defining

(biologically relevant) events along a timeline or

mapping dynamic behavior directly on the evolving

networks. For example, an evolving metabolic net-

work that unfolds enzymatic activities on a timescale

of billions of years was studied using a database that

traces evolutionary information onto metabolic net-

work structures (https://manet.illinois.edu) and bi-

partite network approaches that connect different

levels of molecular organization (Mughal and

Caetano-Anoll�es 2019). To illustrate, the enzymes

of metabolic pathways can be grouped into

“subnetworks” and “mesonetworks” following levels

of the KEGG database classification (Kanehisa et al.

2004). Subnetworks encompass functionally related

enzymatic pathways, while mesonetworks pool sub-

networks with similar functional capabilities. For ex-

ample, enzymatic pathways of nucleotide

interconversion, biosynthesis, catabolism, and salvage

of the subnetworks of “purine metabolism” and

“pyrimidine metabolism” are grouped into the

“purine metabolism” mesonetwork. Figure 3 shows

a time series of networks describing how enzymes are

shared by “mesonetworks.” These evolving networks

can be used to study the recruitment of enzymatic

activities in metabolic pathways. Similarly, an evolv-

ing network that links protein domains to functional

P. Bogdan et al.1996
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loops and defines an “elementary functionome” of

protein structure was unfolded on a timescale of

billions of years (Aziz et al. 2016). This allowed

tracking the emergence of function in protein do-

main organization. At completely different time-

scales, physiological processes that are triggered by

stress can also be dissected with networks. For ex-

ample, metabolomic networks that describe the con-

nectivity of metabolites on a timescale of hours

reveal patterns of bacterial metabolic rewiring (Aziz

et al. 2012). In all of these examples, hierarchical

modularity, multifractal, and network curvature ap-

pear as emergent properties of biological network

structures. Why? Is hierarchy, multifractal character-

istics, and specific network curvatures a necessary

consequence of the rise of modules in biology and

how are those related to the functionality and rules

of life? Is hierarchy associated with the rise of levels

of organization?

Unknown unknowns: Tracing networks in time is

not a trivial task since in reality not all biological

variables can be measured. Due to emerging evolu-

tionary behavior, not all biological variables are

known from the beginning (but rather discovered

as the biological evolution unfolds) or the environ-

mental perturbations grow in number, magnitude,

and complexity (e.g., as a function of disappearance

of biological species, variations in temperature, hu-

midity, pressure)—these are called “unknown

unknowns” governing the observed biological dy-

namics. Consequently, to decipher and characterize

biological networks over time, we need new mathe-

matical and algorithmic tools that would reconstruct

networks from partial observations, from various

types of biological data sources and overcoming

interventions. Examples include the use of time se-

ries data analysis on average sensitivity values of the

networks, spike/event time sequences of biological

activity (excitatory or inhibitory), and time sequen-

ces of partially observable subnetworks of an un-

known time evolving biological network (Xue and

Bogdan 2019). Moreover, specific critical nodes

(e.g., neurons, cells, and bacteria) may exhibit

long-range memory and multi-fractal dynamic char-

acteristics in order to cope with external perturba-

tion and enforce a cue or rule toward a collective

goal. From a mathematical perspective, we require

not only more accurate causal inference techniques

to identify the multiscale interactions across biolog-

ical components, but also algorithms capable of es-

timating the number of unknown unknowns and

determining which variables exhibit either a non-

Markovian dynamics (i.e., which can be modeled

through a combination of fractional order deriva-

tives) or a Markovian one (i.e., which can be

encoded through integer order derivatives) (Bogdan

2019; Gupta et al. 2019).

Developing the framework

We propose a series of activities to develop our

framework:
(1) Define entities (nodes) and connectivities (links,

arcs) that are appropriate to each biological sys-

tem (see case studies below), while carefully

considering drawbacks from the “units in biol-

ogy” problem we discussed above.

Fig. 3. The sharing of enzymes among mesonetworks at different stages of metabolic evolution. Nodes represent mesonetworks: AAC,

amino acid metabolism; SEC, biosynthesis of other secondary metabolites; CAR, carbohydrate metabolism; NRG, energy metabolism;

GLY, glycan biosynthesis and metabolism; LIP, lipid metabolism; COF, metabolism of cofactors and vitamins; POL, metabolism of

terpenoids and polyketides; NUC, nucleotide metabolism; AA2, metabolism of other amino acids; and XEN, xenobiotics biodegra-

dation and metabolism. Links represent sharing of enzymes, with weights proportional to their numbers. Time of networks is given in

billions of years ago (Gya) and was inferred from a molecular clock of protein folds (Wang et al. 2011). Note how all mesonetworks

(except GLY) are already sharing enzymes 3.3 Gya, especially AAC. Redrawn from Mughal and Caetano-Anoll�es (2019).
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(2) Use biological sampling to define the history of

biological networks (e.g., development, physiol-

ogy, metabolite dynamics, and structural dynam-

ics) that unfold at manageable timeframes (years

to minutes to nanoseconds). Example networks

include networks that describe gene expression

patterns, signaling networks, developmental net-

works, food webs, and neural networks.
(3) Sample niches and populations to define the his-

tory of ecological networks and study their

dynamics.
(4) Use phylogenomic or stratigraphic information

to reconstruct the history of biological networks

that describe evolving molecular machinery

(e.g., proteome, metabolism, functionomes, sig-

naling networks, protein–protein interactions,

and domain organization) or genes that encode

this machinery. Most of these networks hold

very deep evolutionary history.
(5) Study the structure of evolving networks (scale-

freeness, randomicity, modularity, hierarchy,

centralities, generalized fractal dimension, mul-

tifractal connectivities, and network curvature).
(6) Model network growth and dynamics according

to different criteria. For example, use a

“morphospace” of networks where modularity,

hierarchy, and dynamics are made explicit (see

below) to study simulated and real networks.
(7) Trace dynamics along evolving networks by defin-

ing events along a timeline or mapping dynamic

behavior directly on the evolving networks.
(8) Study the mathematical characteristics of the

evolving networks (e.g., using time series data

analysis on average sensitivity values of the net-

works, spike/event time sequences of biological

activity (excitatory or inhibitory), time sequen-

ces of partially observable subnetworks of an

unknown time evolving biological network

(Xue and Bogdan 2019)). For instance, specific

critical nodes may exhibit long-range memory

and multi-fractal dynamic characteristics to

cope with external perturbation and enforce a

cue or rule toward a collective goal.
(9) Explore how networks integrate across levels of

biological integration. Determine what informa-

tion is lost or gained as networks incorporate

information from molecular, cellular, organ, or-

ganism, population, community, and ecosystem

levels of biological organization.

How can hierarchy and other forms of network

complexity be linked to functionality and the rules of

life? A useful approach is to define a morphospace of

network structure and a morphospace of network

hierarchy (Fig. 4) and compare how model networks

generated by simulation (satisfying specific proper-

ties in terms of multifractality and curvature/hyper-

bolicity) and real networks distribute in structural

space. Corominas-Murtra et al. (2013) for example

have shown that networks across scales exhibit a

bow–tie structure that is typical of that found

when studying the WWW (Broder et al. 2000)

or metabolic networks (Ma and Zeng 2003; Kim

et al. 2019). Is this indeed a generic structure that

manifests across scales? To determine when a hierar-

chical network was accurately identified and charac-

terized, we require mathematical and algorithmic

techniques to investigate the nonconvex free energy

landscape associated with the morphospace of net-

work hierarchy and determine the model networks

that minimize the network free-energy candidates.

Furthermore, being able to estimate or investigate

the scale-dependent free-energy landscape from bio-

logical data could also help us determine how ge-

neric structures and the rules by which are generated

manifest across spatiotemporal scales. From this per-

spective, the deciphering and understanding of bio-

logical systems contributes to the birth of a new

branch of mathematics at the intersection of multi-

fractal network geometry, statistical physics and op-

timization, and potentially lead to new data science,

machine learning, and AI algorithms.

Drivers of network structure and
dynamics at different levels of
organization

A multidimensional landscape of drivers or causal

relationships are likely responsible for the structure

and dynamics of biological networks. These drivers

can be of different types and most likely themselves

form a wire diagram of causality. Major categories of

drivers include: (1) Evolutionary (e.g., life history,

adaptation, canalization, and recruitment); (2)

matter-energy (e.g., dissipation and budget); (3) in-

formation (e.g., entropic flow and modes); (4) struc-

tural (e.g., energy potentials and binding sites); (5)

spatiotemporal (e.g., molecular and structural spaces,

temporal flow); (6) trade-off solutions (e.g., econ-

omy, flexibility, robustness, and plasticity); (7) per-

turbation (stress)–homeostasis (some networks just

developed to evaluate stress only); (8) ontogeny;

(9) growth and development; (10) ecology; (11) lev-

els of biological organization; (12) behavior; and

(13) ontology (e.g., the Gene Ontology directed acy-

clic graph).

The following are examples of systems, from lower

to higher levels of organization. They illustrate major

P. Bogdan et al.1998
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drivers of network structure and dynamics (in pa-

rentheses). These networks are familiar to one or

more of the authors and involve biological domains

immediately suited for analysis using the approaches

discussed above.

(i) Protein–protein interaction networks (PPINs)

(structural drivers). PPINs, with individual pro-

teins as nodes and physical interaction as links,

are classic subjects of systems biology. PPINs

have been identified for protein families, whole

proteomes, and even inter-species relationships.

Historically, this has been enabled by high-

throughput technologies for data collection for

both nodes (transcriptomics and proteomics to

rapidly define all protein nodes) and links (affin-

ity pulldown—mass spectrometry, yeast two-

hybrid, and other heterologous screens for mea-

suring interaction strength). Modularity emerging

from PPINs often correspond with specific func-

tions, including transcription, nucleosome assem-

bly, and hormone signal transduction

(Arabidopsis Interactome Mapping Consortium

2011). Within functional modules, certain nodes

form hubs with high degrees of connectivity. In

addition, articulation points that connect across

modules were apparent. For example, in a recently

measured cell surface Interactome for plant

leucine-rich repeat ectodomains, high degree and

articulation nodes are apparent and correspond

with known co-receptors shared in many different

immune receptor complexes (Smakowska-Luzan

et al. 2018). Functional validation of these nodes

using genetic knockouts has demonstrated that

hubs and articulation points have widespread im-

mune phenotypes that affect multiple pathways

(Fig. 5A), in contrast to peripheral nodes only

required for specific recognition functions. For

example, well-studied somatic embryogenesis re-

ceptor kinase (SERK) co-receptors have been

shown to form the highest connectivity in the

PPIN of extracellular leucine-rich repeat recep-

tors. Inter-species PPINs with factors required

for pathogen virulence feature links that predom-

inantly connect to host hubs (Mukhtar et al.

2011).

(ii) Cell cycle network (transition-development driv-

ers). The yeast cell cycle represents a well-

studied and important biological system. The

network of protein factors that allow the cell

to progress from one phase to the next is par-

ticularly important (Dorsey et al. 2018). The

Fig. 4. Morphospaces of network structure (A) and hierarchy (B) showing the placement of toy examples of typical graphs describing

archetypes of the phenotypic landscapes and real networks (metabolic, neuronal, and food web networks highlighted with colors). In

one morphospace (A), Erdös–R�enyi (ER) random graphs transform into regular graphs by decreasing randomness or into modular ER

graphs by increasing modularity. Hierarchical modular structure requires both increasing modularity and heterogeneity and decreasing

randomness. In another morphospace (B), treeness defines the unification or diversification of hierarchical signal in the network,

whereas orderability defines the centrality of cycles in network structure. Figures redrawn from Sol�e and Valverde (2004) and

Corominas-Murtra et al. (2013).
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data used to make the network are the physical

properties of the protein factors. Parameters of

localization, concentration, dynamics, and inter-

actions are a function of cell size. Nodes are cell

cycle phases (G1, S, G2, M, and cytokinesis) and

the links are the events that allow transitions

from one phase to the next. Each node encom-

passes a sub-network. Figure 5B describes the

subnetwork composing the G1-phase node. The

changes in this subnetwork with time allow for

progression from G1 to S phase. Note that: (1)

The links are the transitions from one phase to

the next. Their thickness changes from 0 to

100% probability over time as the interactions

within the module change. Once the transition

occurs they revert back to zero. Reverse transi-

tions are not allowed. (2) The stochastic inter-

actions within each module and the changes in

protein factor copy number with time determine

the dynamics of the network. There is biological

noise due to the stochasticity of the interactions.

(3) The outputs are the cell size at which each

of the transitions occurs. (4) Changes in envi-

ronment or mutations perturb the network.

Extension to mammalian cells and cancer de-

mand developing tools for making required

Fig. 5. Example systems visualized with network representations. (A) A highly connected PPIN showing significant interactions be-

tween plant leucine-rich repeat receptor ectodomains (Smakowska-Luzan et al. 2018). Subnetworks and nodes with strong and varied

connectivity are apparent from network analysis. Edges indicate significant interaction between two ectodomains. Edges are thick and

red colored in proportion to reported interaction strength. Extracted, yellow-colored nodes highlight highly connected SERK proteins

known to be genetically required for many plant environmental responses. (B) A subnetwork describing the G1-phase node. The

transcription factors, SBF and MBF, which control the G1/S cell cycle transition in yeast, increase in copy number throughout G1,

eventually saturating the G1/S target promoters. A feedback phosphorylation loop inactivates Whi5, a repressor if SBF via a cyclin

dependent kinase ensures a sharp transition (plot in the right). From Dorsey et al. (2018). (C) Network representation of metabolic

disorders mediated by hepatic steatosis. The network was built to predict events that lead to hepatic steatosis from high throughput

assays. The network topology converged into four key events (i.e., lipogenesis, and fatty acid uptake, efflux, and oxidation) that were

viewed as critical paths leading to steatosis. Assays measuring these points of convergence integrate the complex interplay of upstream

events and translate them into measures that are more directly related to the adverse outcome. FA, fatty acid; TAG, triacylglycerol;

PI3K, phosphatidylinositol-3-kinase; AKT, protein kinase B; PPAR, peroxisome proliferator-activated receptor; LXR, liver X receptor;

CAR, constitutive androstane receptor; PXR, pregnane X receptor; FXR, farnesoid X receptor; RXR, retinoid X receptor. From

Knapen et al. (2018). (D) Gene transcriptional networks change as rainbow darter testis undergoes development to maturation

(Bahamonde et al. 2016). (E) The Mojave (MOKA), Death Valley (DEVA), and Peninsular (PENI) networks vary in network metrics.

Nodes in the network represent populations: node size and color are proportional to eigenvector centrality. Edge weight is pro-

portional to levels of gene flow (Nm). (F) The entire sensory surround of the organism is represented in the brain’s “central complex”

diagrammed here. Projections of columnar neurons originating from the (upper modules W, X, Y, and Z provide sub-modules to the

left [L, L8–L1] and right [R, R1–R8] of the midline that provides connections to successive computational layers EB). Computations

within the PB, FB, and EB are relayed to decussating axons extending into the lateral centers (LAL), where they gate the activity of

premotor neurons (DN). The proposition here is that one module represents 1/16th of the sensory envelope.
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measurements in less genetically modifiable sys-

tems than yeast.

(iii) Organ-level network (perturbation drivers). A

perturbation network (stressor—beyond homeo-

stasis) describes pathways that converge to stea-

tosis–lipogenesis, and fatty acid uptake, efflux,

and oxidation (Angrish et al. 2016; Knapen et

al. 2018; Villeneuve et al. 2018). The hepatic

steatosis adverse outcome pathway (AOP) net-

work represents a network that spans scales,

and includes molecular, cellular, organ-level,

and organismal level responses (Fig. 5C). The

output of the network is to predict hepatic stea-

tosis. The network is structured to represent the

receptors within the liver and how activation of

these receptors intersects and direct processes

that when off balance could induce fatty liver

disease. The modularity of the network is repre-

sented by what can be measured in terms of

physiological parameters (e.g., binding to recep-

tors, and measurements of lipids). The nodes in

the network are called key events and are largely

physiologically derived. The links are down-

stream effects after activation or relationships

between key events (metabolome). The strength

of association of each node is estimated through

Bayesian network analyses and this is a feed for-

ward network. If sufficient perturbation of this

network occurs within a specified amount of

time, hepatic steatosis will occur. The network

exhibits plasticity to a point of departure (at

each key event), and then proceeds to the next

outcome. There will be individual variability

(each person is different) that could be explained

by population identifiers. The network is

intended to accurately represent and predict

how a system will respond to perturbation,

even if that involves some degree of abstraction,

simplification, or implicit embedding of more

detailed underlying systems understanding

(Villeneuve et al. 2018).

(iv) Developmental networks (growth and develop-

mental drivers). Gonadal growth of male rain-

bow darter during periods designated as develop-

ing, pre-spawning, spawning, post-spawning and

recrudescence, and the transcriptional network

that corresponds with each stage, changes, and

is dependent on structure and function (Fig.

5D). These data suggest that there are distinct

transcriptomic fingerprints for testis stages, and

this study provides novel mechanistic insight into

molecular signaling cascades underlying sperm

maturation in fish (Bahamonde et al. 2016). A

gene expression network based on microarray

data describing how the gonad develops demon-

strates how the network changes as structure and

function changes. This particular network is

based on one level of organization (the transcrip-

tome) but is classified according to the organ

level changes. The genes cluster differently at

each stage of gonadal development. Since this is

microarray data, and not RNA-seq data, some

aspects of the network could be missed

(Bahamonde et al. 2016; Basili et al. 2018).

(v) Microbiome networks (perturbation drivers). A

microbiome is a community of microbes (which

can include bacterial, protozoal, and viral taxa—

“virome”) that inhabit a particular organ/tissue

of a host (typically an animal or plant) (Berg et

al. 2020). Gut microbiomes for example are well

studied in humans and some animal species, usu-

ally focusing on bacterial taxa. Next generation

sequencing (NGS) technologies enable quantita-

tive descriptions of such communities in great

detail, including phylogenetic distinctions below

the species level (in any case, the species concept

is rather fraught for microbes), delivering relative

abundances of thousands of operational taxo-

nomic units (OTUs). These microbial communi-

ties influence host health and behavior pro-

foundly. This influence takes advantage of a

range of different mechanisms, which are only

beginning to be understood, the ontogeny of

microbiomes within their hosts, and their dy-

namics throughout the host’s lifetime. The

responses of microbiome communities to pertur-

bations, such as antimicrobial agents, infections,

or changes in host diet are of particular relevance

to understanding their impact to host health, and

harnessing this knowledge for therapeutic use.

Microbiome communities are well represented

as networks of species, characterized by co-

occurrence, though typically interactions of

OTUs are not explicitly measured. Nonetheless,

exploring associations between microbiome

structure and for example robustness versus plas-

ticity over time and under different regimes of

disturbance/perturbation could be a powerful ap-

proach to understand patterns of health and dis-

ease, across different host species and disease

phenotypes, as driven by variation in

microbiomes.

(vi) Networks of populations (ecology drivers): Natural

populations often occur as fragmented metapo-

pulations—networks of populations linked by

dispersal and migration. Fragmented population

structure may occur naturally, due to patchy dis-

tribution of suitable habitat, such as mountain-

tops, ponds, or in the case of humans and their

animals, cities, and farms. In addition, anthropo-

genic transformation can alter the structure of

population networks, increasing or decreasing

Biological networks across scales 2001
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the movement of organisms among patches

(connectivity). For example, human traffic can

connect populations by translocating organisms,

while habitat loss can isolate populations in pro-

tected areas or climatic refugia. Understanding

how changes in population network topology af-

fect the resilience/robustness of the component

populations to environmental change (also: dis-

ease spread) is an increasingly urgent priority, as

we continue to launch inadvertent experiments

manipulating landscape connectivity.

Desert bighorn (DBH) sheep present a compel-

ling model system (Buchalski et al. 2016). DBH

inhabit mountain ranges where higher precipita-

tion and lower temperatures provide higher for-

age quality, and where steep, open terrain allows

them to visually locate and avoid predators. DBH

are thus segregated into relatively independent

populations by the naturally fragmented distribu-

tion of mountainous terrain, creating a

metapopulation-like structure in which local

population sizes range from tens to a few hun-

dred individuals and genetic drift is strong but

variable (Bleich et al. 1990). Population extinc-

tion and recolonization have been observed, and

extinction varies with elevation, precipitation,

and access to water (Epps et al. 2004).

DBH networks defined by observed levels of gene

flow (Nm) vary in topology, and populations

within networks vary in centrality (Fig. 5E). The

Mojave (MOJA) and Death Valley (DEVA) net-

works are similar in size, but populations in the

Mojave are more connected than in Death Valley.

Centrality in the DEVA system is far more polar-

ized, with just two very strongly connected pop-

ulations contrasting 11 fairly isolated ranges;

whereas in the Mojave, the gradient in population

centrality is much smoother. The Peninsular

Range (PENI) network is smaller, and has an in-

termediate number of strongly connected popula-

tions compared with the MOJA and DEVA net-

works, with slightly weaker connectivity overall

compared with the other two networks. Which

networks are more resilient to environmental per-

turbations of different types—from climatic vari-

ation to invasion of infectious agents?

(vii) Saltmarsh (ecology and perturbation drivers).

Ecosystems are complex networks of interacting

species with various environmental inputs of

varying importance and with stabilizing feed-

backs. For example, salt marsh ecosystems have

existed for millennia more or less in equilibrium

with sea level, and this has been possible because

of negative feedback between the higher plants

and flooding (Morris et al. 2002). However, the

feedback can be positive and destabilizing if the

rate of sea-level rise is too rapid. Focusing on

the negative feedback, we know that the plants

respond positively with greater net primary pro-

duction (NPP) when sea level rises, provided the

relative elevation of the marsh is high. When

NPP rises, biogenic soil volume and sediment

trapping increase, which raises the elevation of

the marsh, maintaining equilibrium. The result

of these feedbacks is a stable (within bounds)

system that has been remarkably resilient in

the face of rising sea level.

(viii) Networks of the brain (behavior drivers). Simple

hierarchical systems of neurons provide various

levels of network complexity. It is no accident

that artificial computational networks are re-

ferred to as “neural nets.” They resemble con-

nections of nerve cells. However, few neuronal

connectivities have been reverse-engineered to

predictive computational networks. An excep-

tion is Donald Hebb’s introduction of associa-

tive learning networks based on synaptic

(nodal) strengthening (Herz et al. 1988), which

was derived from a simplistic but relevant view

(in 1949) of hippocampal organization. Hebb

postulated that a neuron’s propensity to relay

information (efficacy) depends on its persistent

stimulation by a presynaptic drive: when two

neurons converge on the neuron and provide

coincident inputs these can be sufficient to per-

manently change the efficacy of the postsynap-

tic cell’s synapse. In other words, synaptic

strength results from presynaptic association.

Hebb’s work immediately attracted researchers

working on the cortex and hippocampus, both

mediating in short and long-term memory

(e.g., Frolov and Murav’ev 1993).

We know from descriptions of chordate and

invertebrate brains that every functional do-

main is defined by its characteristic network

arrangement-patterned synaptic connections

among its constituent neurons, and its connec-

tions from and to other domains. Some func-

tional domains show close genetic, structural,

pathological, and functional similarities, which

taken together imply genealogical correspon-

dence: hence phenotypic and genotypic homol-

ogy implying an origin in deep time before the

divergence of lineages leading to vertebrates

and invertebrates. Currently, the most interest-

ing “real” neural networks are in the most an-

terior region of the brain: the vertebrate basal

ganglia and hippocampus; in panarthropods the

“central complex” and mushroom bodies

(Wolff and Strausfeld 2016). Basal ganglia and

central complexes in common (Strausfeld and

Hirth 2013) coordinate motor actions by
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editing outputs by orchestrating systems of in-

hibitory connections that selectively gate out-

puts relevant to a required behavior permitting

information to reach circuits controlling motor

neurons to muscle. Genetic deletions, or inter-

ventions of dopaminergic modulators in the

network lead to Parkinson’s-like pathologies

in both mouse and fruit fly. Insect mushroom

bodies and vertebrate hippocampus form long

term associations relating to the memory of

place, experience, and sentience.

The “central complex” comprises discrete com-

putational modules supplied by high-level sen-

sory inputs (Fig. 5F). Modules assess the bilat-

eral weighting of sensory percepts to provide

appropriate signals to controllers—the inhibitor

neurons that gate motor actions. Precision of

connections across the modules reflects dexter-

ity: invariant precision of a praying mantis, but

noisy connectivity in a species with moderate

dexterity, such as a cockroach. In Drosophila,

optogenetics and electrophysiology document-

ing the central body’s role in working memory

and motor control (Seelig and Jayaraman 2013;

Wolff and Rubin 2018) demonstrate that this

center is a paradigmatic neural network ready

for deeper study using mathematical network

analysis. Prediction of network activity under

precise parameters can be compared with ex-

perimental data.

Barriers and challenges

The “networks across scales” grand challenge

attempts to find common network structures and/

or common network dynamic behaviors that unify

biological systems across levels of organization. But

how can we find organizing principles that are com-

mon across biology when systems range from inter-

actions of genes or metabolites to descriptions of

entire ecosystems? Such a grand objective of finding

common organizing principles that span molecular

makeup to planetary macrostructure is limited by a

multitude of barriers that must be overcome. For

example, network diversity, structure, complexity,

metacomplexity, causality, completeness, and univer-

sality complicate knowledge integration.

Diversity: An important barrier is the actual di-

versity of the nodes and links of networks. This di-

versity must be defined when studying, comparing,

and/or integrating systems. For example, the PPINs

of Fig. 5A have protein nodes connected by links

describing the existence of interactions between cell

surface proteins. The network of protein factors of

the cell cycle of Fig. 5B describes the interaction of

transcription factors and a cycle dependent kinase

with promoters of crucial genes of the G1 binding

and phosphorylation modules. The networks of DBH

sheep populations of Fig. 5E describe how popula-

tion nodes are connected in different landscapes.

Connecting interactions of cell surface proteins, cell

cycle regulation, and spread of genes in sheep pop-

ulations showcases the complexity of trying to inte-

grate three distinct biological systems. These

interactions could be visualized with a tripartite

graph, which is a special case of k-partite graphs.

This general class of graphs has nodes that can be

divided (partitioned or colored) into k disjoint sets

(partitions or colors) and connections (links) that

always connect nodes belonging to different sets.

Closed k-partite graphs do not impose restrictions

of the k-partite structure of connected nodes (all

sets can connect to each other). Open k-partite

graphs do not allow a tightly connected structure

(circular in the case of tripartite graphs). The use

of k-partite structures in network biology has been

limited. For example, Koç et al. (2018) devised a

tripartite network of gene-metabolite-pathway con-

nectivity that linked transcriptomes to metabolism

using a metabolite-centric reporter pathway analysis.

However, one benefit of k-partite structures is that

they can be decomposed into simple graphs; open

tripartite graphs can be decomposed into one-

mode and two-mode (bipartite) graph projections

to improve visualization.

Structure: Biological systems are structured. The

behavior, interactions, and goals of subsets of parts

may differ from the rest of the system. One kind of

structure that is common is the “module.” Modules

are sets of integrated parts that cooperate to perform

a task and interact more extensively with each other

than with other parts or modules of the system

(Hartwell et al. 1999). Modules are generally defined

within structural, functional, and historic contexts.

Since many networks study how modules organize

into systems, the contextual definition of a module

poses a problem for constructing biological net-

works. Modules are also at the heart of our under-

standing of robustness, the capacity of a biological

entity to persist under the uncertainties of change.

Can we generate a general theoretical framework for

biological modules across spatial, functional, and

temporal scales? Since modularity appears linked to

hierarchy in biological systems (reviewed in Caetano-

Anoll�es et al. 2019, 2021), what are the evolutionary

drivers of hierarchical modularity in network

structure?

One example at the molecular structure level is

the structural domain module of a multi-domain

Biological networks across scales 2003
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protein. The organization of domain modules in

proteins, which massively unfolded in a “big bang”

of domain combination during the rise of multicel-

lularity and the eukaryotic superkingdom, has been

modeled with a time series of evolving networks

(Aziz and Caetano-Anoll�es 2021). These networks

unfold both hierarchy and modularity in evolution.

They show significant network structure.

Structural modules also exist in cellular organiza-

tion. Together with the “central complex” of the

brain (Fig. 5F), the “paired mushroom” bodies are

examples of networks comprising discrete modules

and interactive nodes. Homologs across phyla repre-

sent divergences from a “ground pattern” network,

originating about 600 million years ago according to

“trace” fossils that recorded behaviors of the earliest

bilateral animals. Mushroom bodies, like the hippo-

campus, comprise orthogonal arrangements of inter-

secting neurons that comprise a Hebbian-like

network. Work on learning and memory in the fruit-

fly Drosophila (Heisenberg 2003) provides the most

accessible system for investigating whether Hebbian-

type associations apply to real-world biological learn-

ing networks. Structural studies show the mushroom

body’s neurons consisting of orthogonal arrange-

ments of local interneurons intersected by converg-

ing inputs encoding various types of unimodal

sensory data organized as would be a massive

Hebbian network. Output neurons that encode mul-

tisensory associations allow the experimenter to

“read” functional properties of the biological

network.

Figure 6 schematizes such multisensory associa-

tions. Different modalities (e.g., visual from the vi-

sual centers [ME, LO] or olfactory from the antennal

center [AL]) encode high level sensory data that can

contribute to sensory associations mediated by

Hebbian type circuits (panel B) provided by thou-

sands of parallel fibers (panel C) that intersect these

sensory inputs (Huerta et al. 2004). Short term syn-

aptic plasticity is achieved by converging sensory

inputs inducing a strengthening (positive—GO) or

weakening (negative—NOGO) modification of syn-

aptic sites that signal to output neurons. Permanent

reinforcement (long term memory) may be estab-

lished by repetitive convergent inputs to the net-

works leading to suppression or facilitation of

circuits contributing to the release or suppression

of downstream motor actions. A mushroom body

comprises hundreds of such networks, many of

which are clustered together in discrete domains,

suggesting hub-like organizations of learning mod-

ules. While much is known about the physiology

of discrete subsets of neurons in these centers,

what is not known are the rules underlying how

these subsets interact such that memories interact,

achieve contextual valences, and form post hoc mem-

ory modifications: all functions expected in sentient

organisms that obtain an understanding of dynamic

ecologies. What is recognized from behavioral stud-

ies across species is that memories are infinitely plas-

tic, even manipulable. Current studies on mushroom

bodies are focused on “connectomics”: the total re-

construction of neural network using serial section

reconstruction of every one of the approximately

2000 parallel fibers and all their synaptic interactions

with incoming and outgoing neurons (Eichler et al.

2017). The many terabytes of data representing

hypercomplex network organization present interest-

ing challenges in interpretation and understanding

these memory systems in terms of reconstructing

functional “real world” representations that can

Fig. 6. Models of the mushroom bodies. (A) Neuroanatomy: MB Mushroom Bodies; AL Antennal Lobe glomeruli (circles); ME & LO

visual neuropils. Relevant neural pathways are shown and labelled for comparison with the model. (B) Reduced model; neuron classes

indicated at right and side of sub-figure. (C) Full model. For explanation see text from Cope et al. (2018).
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explain and indeed imitate sensory associations and

memory acquisition.

Complexity: Since systems are structured into

highly integrated subsystems (Simon 1962), there

will be need to integrate networks both across and

within scales. For that purpose, we can take advan-

tage of Simon’s “near-decomposability” of systems

(Simon 1997), which allows for “long-term behavior

to be studied on an aggregative basis without con-

cern for internal details of the parts, and allows the

short-term behavior of each part to be studied inde-

pendently of the behavior of the other parts.” In

some cases, it may be straightforward to dissect com-

plexity scales because each part of the nearly-

decomposable system will have strong internal links

among its subparts (see Fig. 5B). In other cases,

there could be significant difficulties because hierar-

chy and modularity could be loosely linked in the

systems.

Barriers to describing very complex networks (e.g.,

ecosystems) can be overcome by analyzing the prop-

erties of random networks generated in silico and

using what we learn to understand real networks.

Figure 7A shows an example of a feasible food web

generated by populating a transfer matrix with trans-

fer coefficients and solving for the equilibrium solu-

tion. A network is feasible if the solutions are all

positive. The methodology is illustrated in Fig. 7B.

After the matrix dimensions are set, the random

inputs (f) and transfer coefficients (A) are generated,

and the solution to dx/dt¼ 0 is determined. The

foodweb is a feasible one if the solution (xs) is pos-

itive. We can ask questions about connectivity and

total system throughput (TST), stability, ascendency

(Ulanowicz 1980), fractal dimension, and size.

The hope is that we can arrive at generalities

about real networks by analyzing the properties

of artificial networks. From a universe of >5000

random food webs composed of as many as 2200

taxa, it was demonstrated that the probability of

generating a feasible network declined rapidly as

the number of taxa exceeded 400. Flow diversity

increased asymptotically, that is, flows became

more uniform (Morris et al. 2005). Ulanowicz

(2002) used an information-theoretic homolog of

the May–Wigner stability criterion to hypothesize

a maximal connection per taxon of about 3. From

the computer-generated networks, the average num-

ber of major flows per taxon (flows greater than 5%

of the total input flows) was 2.1, similar to those of

real food webs and not so different from that pre-

dicted by the May–Wigner criterion. The explana-

tion may be the limit imposed by gross primary

production on energy flow, like the limits that re-

source space places on the distribution of species

(MacArthur 1957). These examples suggest there

are fundamental relationships between network

structure and function.

Meta-complexity: Another barrier is the meta-

complexity of the systems that must be modeled.

For example, nodes can represent a variety of enti-

ties: objects, agents, relationships, scaffolding, events,

dynamics, and aggregations. To illustrate, proteins in

PPINs can be considered objects but also agents.

Molecular functions in the direct acyclic graphs of

Gene Ontology can be considered events. Similarly,

links can become structured, revealing complexity in

biological networks (Ahn et al. 2010). Link commu-

nities thus express additional meta-complexity. Can

all these entities be scale invariant? Would it be pos-

sible to develop a common vernacular? If so, would

there be a way to classify specific node or link iden-

tifiers? It is here where epistemology and ontology

must interface.

Fig. 7. Generating artificial food webs by in silico modeling. (A) Foodweb generated by populating a transfer matrix with transfer

coefficients and solving for the equilibrium solution. (B) Methodology used to generate modeled food webs (described in the text).
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Meta-complexity also manifests in the diversity of

the functions (e.g., differential equations) that are

mapped onto nodes and links. Mapping functions

to links often define the non-linear dynamic behav-

iors of matter-energy and/or information traveling

between nodes through a vector of state variables.

A diversity of dynamics can therefore unfold in

link communities. For example, link communities

of metabolism could define reversible and irrevers-

ible metabolic reactions and transport processes.

These processes can be dissected with sets of non-

linear equations, which cannot be solved analytically

but can be visualized in an abstract n-dimensional

state space with a “velocity” vector field. The chal-

lenge is therefore to mine steady states of the multi-

dimensional space (e.g., fixed-point attractors,

chaotic aperiodic motions, and close loop attractors)

to understand the landscape of dynamic behaviors of

biological systems.

Causality: Because life requires explaining contin-

uous change and a multitude of overlapping pro-

cesses, a framework of causal explanations has the

potential to uncover life’s multilayered complexity.

We could call these processes “activities” and the

temporal ordering of dependencies between com-

plexity layers “causation.” Within this philosophical

framework, nodes can represent the structure and

dynamics of immanent entities (events) that span

the spatiotemporal confine or transcendent entities

that are abstract in nature. We can call these nodes

“causal relata” and the directed links that connect

them “causal relations.” Beginning with David

Lewis, causal networks have been modeled by incor-

porating probabilistic or Bayesian network

approaches and causal and counterfactual inference

(Pearl 2000). These kinds of approaches are power-

ful. They are currently impacting the emerging AI

field. However, effective integration approaches

must be sought, perhaps using experiments, predic-

tive computational methods, theoretical and mathe-

matical approaches, and the exploration of functions

and constraints with philosophical approaches. One

example is modeling causal interdependent non-

linear dynamics with multivariate discrete dynamical

systems (automata networks). In particular, Boolean

networks are canonical models that have been ap-

plied to a number of complex systems very success-

fully. To capture redundancies in system dynamics of

biochemical regulatory and signaling interactions, a

mathematical framework called the “effective graph”

for example was capable of synthesizing both net-

work structure and dynamics in a weighted graph

representation of discrete multivariate systems

(Gates et al. 2021).

Completeness: The development of case studies

that explore and look for common threads in the

structure and dynamics of networks could be prom-

ising. Commonalities that are predictive for example

along economy, robustness, flexibility, or plasticity

axes or within morphospaces could be identified

and then extended to the study of a broader range

of systems. However, the methodological problem of

“gappy” or incomplete data sets and the issue of

“snapshots” complicate any endeavor. Following

the genomic revolution, biology has been able to

define entire repertoires of biological entities (e.g.,

genes, metabolites, fold structures, and molecular

functions). While certain explorations have been

comprehensive many others are lagging behind. For

example, the universe of proteins can be described

with a finite set of folds and fold superfamilies sum-

marizing the overall three-dimensional atomic design

of structural domains. The SCOP (Murzin et al.

1995) and CATH (Orengo et al. 1997) databases,

the gold standards of protein classification, show

that protein folds group into 2705 SCOP (http://

scop.mrc-lmb.cam.ac.uk) and 5481 CATH (https://

www.cathdb.info) well-curated superfamilies (as of

April 29, 2021). These numbers are reaching a pla-

teau, strongly suggesting that most structural designs

have been sampled through structural genomic

efforts. In sharp contrast, the world of species and

our understanding of the Tree of Life is far from

complete (Hug et al. 2016). Considerable “dark

matter” exists at both the level of cellular organisms

and viruses. These uncertainties raise a number of

important questions. Are networks biased by the ex-

perimental knowledge or focus on individual com-

ponents and are there situations where key nodes are

not represented because nobody has really studied

them? Are there methods that can identify gaps or

normalize over emphasized nodes? Another method-

ological problem is the issue of “snapshots.”

Numerous experimental approaches provide single

measures within a continuum of change. For exam-

ple, the crystallographic acquisition of three-

dimensional atomic structures has been stored in

the RCSB Protein Data Bank (PDB) repository

(https://www.rcsb.org). Currently, there are 177,219

biological macromolecular structures available in the

database, which has been growing at a significant

pace (>10,000 PDB entries per year). Despite these

significant accomplishments, PDB entries represent

conformational “snapshots” that give little justice

to the conformational molecular landscape of pro-

teins and nucleic acids. There is now hope that cryo-

genic electron microscopy (Cryo-EM) may pave the

way to wide-encompassing conformational views.
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This example highlights the problems of acquisition

of longitudinal data that can describe the dynamics

of numerous biological processes at different time-

scales. Consequently, there will be a need for analyt-

ical tools that can manage “big data,” including

longitudinal datasets, and can make use of different

data flows in a unified methodological framework.

Universality: Finally, there is the problem that not

all data types can be modeled with networks. This

difficulty challenges the concept of networks across

biological scales. Simplification must occur if infor-

mation from multiple levels of biological integration

are incorporated into a network (e.g., hepatic stea-

tosis), or if the network changes over time because of

development or evolution, and a rigorous evaluation

of the assumptions and rules underlying network

simplification is required.

Broader impacts

Studying biological networks across scales is by def-

inition broad impact in terms of the immediate

knowledge that it generates from a large-scale study.

The practicalities of constraining this to a tractable

approach include developing new algorithmic tech-

niques to link information, determining the influ-

ence of different levels of noise on the knowledge

produced from that information, and evaluating

the reliability of that knowledge. While leading to a

set of rules, it allows those rules to be defined in

their applicability and rigor. The approach uses

Nature as the data set to define how a system works.

Where theoretical modeling does not agree with ex-

periment, it helps find signal in noise and defines

areas where new knowledge is awaiting discovery.

Nature has had a long time to conduct its own

system experiments. By studying the nature of how

those systems develop and interact across different

scales, our approach allows a more concrete under-

standing of the impact of perturbations on those

systems, whether it be a large-scale shift in environ-

ment (e.g., ocean pH and average temperature

shifts), advance of an invasive species, or small scale

such as the extinction of a rare species, or the mu-

tation of an amino acid. This in turn sets guidelines

to prioritize the response to these changes so that

resources can be devoted to mitigate influences

that cause the maximum impact.

The nature of the study extends beyond biology.

Nature can be seen as the ultimate laboratory setting

to test network and systems performance with the

experiment having the ultimate metric of success—

life or extinction. The results and rules established

can be extended to non-biological systems, for

example, redundancy in automation, self-

organization for transport within a city, response

to perturbation in a system, and transient

approaches that activate. It is not too strong to say

that this could lead to a totally new approach to

network and systems science in both the physical

world, but also in the computational arena.

Reintegrating biology

To effectively study a network across scales, a net-

work of experts in each of those scales (and individ-

ual research areas) needs to be created. A common

language is needed to link those experts and a back-

bone organization established to ensure that the ef-

fort is focused on the questions and not the

administration. This mirrors the concept of collective

impact where a common agenda, shared measure-

ment systems, mutually reinforcing activities, contin-

uous communication, and a backbone organization,

maximize limited resources to produce maximal out-

put (Kania and Kramer 2011). By design, formula-

tion around a collective impact model reintegrates

separate disciplines and expertise into a common

goal.

The common agenda is to establish collaboratives

that provide:

• Longitudinal empirical network data across a

broad range of biological systems and scales, ide-

ally including observational, experimental, compu-

tational, and theoretical approaches.

• Analytical expertise to analyze these datasets ask-

ing common questions and using common tools.

• Modeling expertise to construct parallel sets of

general network dynamic models, putting into

context and providing generality to the set of em-

pirical studies.

• Space-time for empirical and theoretical project

leaders to come together to synthesize findings,

identifying commonalities and differences across

systems.

• Measurable outcomes to test, improve, and verify

the approach.

A shared measurement system necessarily requires a

shared language across different disciplines. There

are ontology approaches to this that help under-

standing of the results but guiding the experimental

and analysis approach is more difficult. As a scien-

tific endeavor we are more used to constructing hy-

potheses and testing those hypotheses—the scientific

method. We must ask ourselves which aspects of

information need to be retained to link biological
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scales. For example, if we are trying to understand

the dynamics of a microbiome community, and/or

its outputs that affect the host: Is it taxonomic com-

position that is the most informative, or is it tran-

script or protein products of the microbial

community? This could potentially be addressed by

constructing competing hypotheses (or different net-

works) that essentially represent the same commu-

nity but using different data flows, and then asking

which of the networks presents predictable dynamics

or best predicts outputs.

Mutually reinforcing activities are critical. With

multiple disciplines involved in a common goal

those disciplines must communicate to interact.

This requires physical interaction (scientific meet-

ings), educational interaction (common training),

and knowledge interaction (summaries of the knowl-

edge produced as it is produced). The resources of

the effort must be understandable by all, at least at

the most basic level of being able to know what they

are, how to use them, and what to look for in the

output.

Continuous communication is linked to mutually

reinforcing activities. For maximum efficiency in un-

derstanding a network of disparate information

across scales and times, communication is critical.

That includes the free flow of information, the es-

tablishment of mutual respect and trust between dif-

ferent research thrusts, and transparent output that

the interested public can follow to understand prog-

ress that is being made.

Finally, the most important part is backbone sup-

port. This includes a strategic leadership that sets the

goals and guides the direction, monitoring of prog-

ress in meeting goals, provision of resources that can

help achieve goals, and maintaining the common

direction, language, communication, and legacy in-

volved in producing and preserving the knowledge

produced. Reintegrating biology is a necessity to

study biological networks across scales.
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Herz A, Sulzer B, Kühn R, van Hemmen JL. 1988. The Hebb

rule: storing static and dynamic objects in an associative

neural network. EPL 7:663–9.

Ho JJ, Navlakha S. 2018. Evidence of Rentian scaling of func-

tional modules in diverse biological networks. Neural

Comput 30:2210–44.

Huerta R, Nowotny T, Garc�ıa-Sanchez M, Abarbanel HDI,

Rabinovich MI. 2004. Learning classification in the olfac-

tory system of insects. Neural Comput 16:1601–40.

Hug LA, Baker BJ, Anantharaman K, Anantharam K, Brown

CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW,

Amano Y, et al. 2016. A new view of the tree of life. Nat

Microbiol 1:16048.

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M.

2004. The KEGG resource for deciphering the genome.

Nucleic Acids Res 32:D277–80.

Kania J, Kramer M. 2011. Collective impact. Stanford Social

Innovation Review, Winter issue. Stanford University. p.

36–41.

Kim H, Smith HB, Mathis C, Raymond J, Walker SI. 2019.

Universal scaling across biochemical networks on Earth. Sci

Adv 5:eaau0149.
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