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Abstract

X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules.
Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure.
In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical
understanding remains elusive because of the large number of variables involved, hence little guidance is available to
systematically identify solution conditions that promote crystallization. To help determine relationships between
macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182
proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the
reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is
characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies
specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct
mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization,
the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability
of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide
macromolecular crystallization toward a more rational basis.
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Introduction

X-ray crystallography is the most frequently used technique to

obtain structural information about biological macromolecules,

currently accounting for more than 88% of the entries in the

Protein Data Bank (PDB) [1]. However, as its name suggests, the

method fundamentally relies on obtaining well diffracting crystals

of the macromolecules or complexes of interest (generally termed

proteins in the crystallographic context and used as such

throughout this paper). Some quantitative data on the success

rate of crystallization comes from the Protein Structure Initiative

(PSI). This program, initiated by the National Institutes of Health,

has enabled high-throughput structural studies of biomolecules

that track the experimental outcome, success or failure. Analysis of

this data reveals that despite the large scale efforts, fewer than 30%

of the proteins that are expressed and purified yield diffraction

quality crystals, and of these only 67% provide structures (20% of

the expressed and purified samples) [2,3]. There are currently

about 100,000 structures in the PDB [1], but more than 10 million

non-redundant protein chain sequences have been reported [4].

The large number of proteins for which detailed structural

knowledge remains unavailable is an ongoing challenge for high-

throughput crystallization.

The current approach to crystallization is empirical. Proteins

are screened against arrays of many chemical conditions that are

biologically ‘‘friendly’’ and have yielded crystals in the past [5]. As

an example, the High-Throughput Crystallization Screening

(HTS) laboratory at the Hauptman Woodward Medical Research

Institute uses 1,536 different chemical conditions each aiming to

reduce protein solubility so as to obtain ordered crystallization [6].

The approach yields at least one crystal in about 50% of the

samples [7], but, from tracking the PSI supplied samples, only
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about half of those initial crystal hits go on to yield subsequent

structural information. This success rate is respectable in the field,

although it should be noted that the result is not a per cocktail

(crystallization experiment) statistic, but a binary analysis on the

presence of a crystal within 1,536 different experiments. Out of all

the screening performed in the HTS laboratory it is estimated that

only 0.2% of individual crystallization screening conditions yield a

crystal; failure is unfortunately all too common [8]. One may thus

hope that an improved physico-chemical understanding of protein

crystallization could help navigate the chemical screening space

more efficiently [9].

The positive and negative outcome data captured by the PSI

and similar structural genomics (SG) efforts have been employed

to determine the key factors that affect protein crystallization. A

number of studies have used amino acid sequence features as

inputs to machine-learning classification schemes, in order to

identify proteins that should easily crystallize and thus be good SG

targets [10–14]. This strategy faces two main difficulties. First, it

typically relies on a protein’s amino acid sequence, which is only

indirectly related to crystal assembly. Surface residues are more

directly linked to the crystallization process [15], but are

challenging to determine with high fidelity de novo. Second, typical

machine-learning methods based on Support Vector Machine,

which divide the feature space between different classes of

macromolecules [16], are deterministic and can be hard to

interpret physically. The complexity of the function that separates

positive and negative regions of parameter space typically hinders

the physico-chemical interpretation of the results and thus the

transfer of microscopic insights to applications beyond crystal

formation, such as peptide design [9,12,17,18].

Two statistical inference models trained on a richer set of

protein features have gone beyond these difficulties [19,20]. Both

of them find that low values of surface side chain entropy (related

to the degrees of freedom of the surface residues) and a high

fraction of small surface residues, such as glycine and alanine,

assist crystallization. They thus support surface entropy reduction

(SER) mutagenesis, which broadly prescribes replacing large

residues, e.g. lysines and glutamic acids, with alanines [21,22], in

order to facilitate crystallization. Yet the two modeling approaches

use somewhat orthogonal algorithms for predicting crystallization

propensity and their results do not always agree [12].

Part of this discrepancy may come from the linearity of the

underlying models. Linear models have the advantage of being

easily interpretable, but they struggle to capture subtle non-linear

and possibly non-monotonic trends, which can make them

sensitive to the details of the training set. However, protein

crystallization responds non-linearly to changes in solution

conditions. Extremely low values of side chain entropy indeed

hinder crystallization by compromising protein solubility, as

observed in experiments [23] and as predicted in solubility models

[24]. George and Wilson also carefully documented the non-

linearity of protein crystallization by identifying the range of

second virial coefficient (not too high, not too low) over which

proteins typically crystallize [25], a result that is fundamental to

the materials physics understanding of protein assembly [26–30].

In this work, we have used a subset of the screening results from

the North East Structural Genomics consortium (NESG) to train

models based on Gaussian processes (GP). GP replace specific

constraints on the functional form of the model with a prior

distributions that weighs all of the (infinite) smooth functions [31],

and can thus better capture the non-linear and non-monotonic

relations in a dataset. The resulting models help us address two

fundamental questions about protein crystallization. (i) What

protein properties determine crystallization propensity in standard

screens? (ii) How do these properties relate to successful

crystallization conditions? Answering (i) enhances existing muta-

genesis prescriptions to facilitate the crystallization of recalcitrant

proteins without denaturing their structure; answering (ii) suggests

guidelines for tailoring and narrowing the set of solution conditions

for crystallizing a given protein.

Results and Discussion

The dataset provided by the NESG contains information about

182 distinct proteins that were supplied in a common buffer and

set up against an array of 1,536 different chemical cocktails

representing an extensive set of crystallization conditions (see

Methods). The different microbatch under-oil experiments were

imaged over time and each outcome was visually classified as

containing a crystal or not. Protein structures were subsequently

determined using X-ray crystallography by the NESG. In this

dataset, a broad range of crystallization propensity, j, defined as

the fraction of the 1,536 cocktails that successfully generated

crystals, is observed. Two proteins formed crystals in as many as

30% of the tested conditions, but most did so in only a few of the

solutions (Fig. 1). The binary classification between crystal or no

crystal does not distinguish between the stochastic nucleation

process and the crystal growth process, once nucleation has

occurred. Both must have happened to produce a crystal. While

we may have false negatives that could be reduced by replication

of the crystallization screening process, the large range of related

chemical conditions and the fairly large number of samples studied

should largely mitigate this effect. Some proteins may nucleate

more easily than others, but once nucleation occurs, growth

follows and the dataset records this outcome. Nucleation could

perhaps be deconvoluted from crystallization by recording the

number of crystals produced per chemical condition, but it has not

been attempted for this study. The term crystallization in our case

therefore necessarily indicates both crystal nucleation and crystal

growth.

GPR: Crystallization propensity
We identified some of the factors behind facile protein

crystallization by training a Gaussian process regression (GPR)

model for j using a set of physico-chemical properties as predictive

variables x. (For mathematical convenience the output function

f (x) of the GPR model is chosen to be f ~j=(1{j) (instead of

f ~j), but the uniqueness of this transformation and of its inverse,

j~f =(1zf ), results in no loss of generality. See also Methods for

more details.) The flexibility of GP enables GPR models to capture

any continuous relationship, no matter how complex, between x
and the output function f . In order to avoid overfitting the model

parameters, we optimized the model marginal log-likelihood (Eq.

(8)), which rewards good fitting of the data while penalizing overly

complex models. The training process selects one specific function

that best captures the effect of the predictive variables x. Because

many local maxima of the marginal log-likelihood can be found

over the parameter space, a broad search is necessary. An

exhaustive sampling is out of computational reach, but the largest

maximum we located is also the best performer in leave-one-out

(LOO) cross-validation (Fig. 2 A and B). This standard diagnostic

tool for overfitting [31] indicates that the choice of parameters is

reasonably representative of the best model. A direct comparison

reveals that the resulting GPR model recovers the observed data

more precisely than linear regression (LR) in 74% of the NESG

proteins, with GPR performing consistently better for proteins

with a moderate-to-high crystallization propensity (Fig. 3). We thus
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confirm that a non-linear model better relates a protein’s

crystallization propensity to its physico-chemical properties.

The significance of specific predictive variables in a GPR model

can be assessed by the magnitude of their corresponding learned

length scale l in the GP kernel function (see Methods). A small l

indicates that the model has a high sensitivity to a specific

property, and vice versa. In that sense l plays a role similar to a

weight in a LR model, but is unsigned. Determining whether a

variable is positively or negatively correlated with the output of the

model requires a local analysis of its predictions.

Comparing l for the different protein surface residues indicates

that the most significant residues are the aromatics (phenylalanine

(F), tyrosine (Y), tryptophan (W), and proline (P)) as well as cysteine

(C) and glutamic acid (E) (Fig. 4). The importance of phenylal-

anine and glutamic acid was uncovered in earlier studies [19], but

that of the other aromatic residues and of cysteine had previously

gone undetected. The contrast between the (small) l associated

with aromatic residues, which are hydrophobic and large, and the

(large) l associated with small hydrophobic residues, i.e., leucine

(L), isoleucine (I), and valine (V), further indicates that only large

hydrophobic residues play a significant role, which is not all

together surprising based on hydrophobicity arguments [32]. The

case of cysteine is interesting. A recent protein crystallization

engineering study found that replacing some residues with

cysteines promotes crystal formation because of the residue’s

ability to form disulfide bonds and hence dimerize [33]. Yet that

very reactivity can also result in noncrystalline aggregation [34].

The non-monotonicity resulting from the two competing behav-

iors, which the GPR model here detects, may explain why earlier

LR-based studies had not detected its importance [19].

At a coarser level, three surface residue categories – small,

positively charged, and polar – are found to be significant (Fig. 4).

Small residues enable the formation of favorable inter-protein

backbone contacts and their low side chain entropy eases the

Figure 1. Summary of some of the features of the proteins contained in the NESG dataset. Histograms report the pI, average hydropathy
index (GRAVY), average side chain entropy (SCE), average polarity (POL). Both the overall (blue) and the surface (cyan) valus are shown for the GRAVY
index, side chain entropy (SCE) and polarity (POL). Distribution of the surface coverage for each amino acid and histogram of the crystallization
propensity j are also shown.
doi:10.1371/journal.pone.0101123.g001

Figure 2. A: Marginal log likelihood for 100 models that each are distinct local maxima of Eq. (8). The model with the highest value is used for the

rest of the analysis. B: Scatter plot of the observed output function fobs~
j

1{j
and its value predicted by the GPR model fGPR using a LOO cross

validation with 95% confidence intervals. The inset details the low propensity data.
doi:10.1371/journal.pone.0101123.g002
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formation of crystal contacts [19,20]. The general importance of

surface side chain entropy (sSCE) further supports this interpre-

tation (see Method for sSCE definition). The role of the other two

residue categories is more controversial. Cieślik and Derewenda

found that polarity strongly affects whether a residue belongs to a

crystal contact [20], but Price et al. did not detect any significant

contribution from individual polar residues [19]. Charged residues

also have an ambiguous role. Lysine is thought to inhibit

crystallization [19], while arginine has been suggested to facilitate

crystallization in isolated instances [30,35,36]. Yet no correlation

between arginine and crystallization propensity had thus far been

noted.

The asymmetry between positively and negatively charged

residues in affecting crystallization propensity is puzzling, espe-

cially because positive and negative residues are almost identically

distributed over the surface of the proteins studied. One possible

explanation is that the effect mirrors the asymmetry (slightly)

favoring pHv7 in the 1,536 condition screens (see Methods). This

imbalance may neutralize the net charge of negative residues and

therefore their ability to electrostatically affect inter-protein

interactions. Another possible explanation comes from the

asymmetry in water’s charge distribution, strengthening interac-

tions between water molecules and negative residues, and

therefore favoring residue solvation [37]. The increased partici-

pation of negatively-charged glutamic and aspartic acids com-

pared to positively-charged residues in protein-protein interactions

bridged by water supports this second scenario [38], but overall

the evidence remains inconclusive.

Figure 3. Difference between the observed and the modeled propensity values f . A: Points in the upper half of the graph correspond to
the cases in which LR performs better than GPR, and vice versa for the lower half. B: The histogram summarizes the overall performance of LR and
GPR.
doi:10.1371/journal.pone.0101123.g003

Figure 4. Length scales l associated with the parameters for the maximal log-likelihood model (highest point in Fig. 2 A). The plots
divide the explanatory variables in (A) residues, (B) residue type (small S, positively charged +, negatively charged {, polar P and hydrophobic H), (C)
neighboring residue type (pairs of these symbols), and (D) other global protein properties (see Methods for details).
doi:10.1371/journal.pone.0101123.g004
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The role of neighboring pairs of surface residues, although

presumed to be significant [39], had not been previously directly

assessed. We find that small-small (SS), small-polar (SP), and small-

hydrophobic (SH) pairs as well as negative-positive (+{) and

negative-polar ({P) pairs markedly affect crystallization propen-

sity (Fig. 4). The significance of the first three pair types reflects the

enhanced role of small residues when coupled with specific residue

types in promoting backbone-backbone (small-small), side chain-

backbone (small-polar) and hydrophobic (small-hydrophobic)

interactions. The importance of neighboring negative and positive

residues is particularly interesting. Intra-chain pairing of these two

residues can indeed suppress a potential source of favorable

electrostatic inter-chain interactions. This mechanism has even

been observed to hinder crystal formation in computational studies

[30], pointing to a potential target for mutagenesis.

Similarly to the case of individual charged residues, which

shows an asymmetry between positive and negative side chains,

negative-polar neighboring residues appear important, whereas

positive-polar pairs are found to play no significant role. Proteins

with a high crystallization propensity are significantly depleted in

both of these pairings (see below and Table 1), suggesting that both

hinder crystallization. We note, however, that retraining the GPR

model without the positive residue category gives as much

importance to positive-polar pairs as to negative-polar pairs.

Similarly, retraining the model without the negative-polar

category gives added importance to the negative residue category.

These observations imply that a strong correlation exists between

positive residues and positive-polar pairs as well as between

negative residues and negative-polar pairs. Yet the correlation is

incomplete. The importance of positive residues is indeed better

captured when they are considered alone (106 times more likely

than the alternate model), and that of negative residues is better

captured when they are coupled with polar residues (102 times

more likely than the alternate model). The source of this

correlation and asymmetry remains unclear, and to the best of

our knowledge, no physico-chemical explanation for this observa-

tion has thus far been suggested.

None of the other protein properties, including their isoelectric

point (pI), significantly affect crystallization, which is in line with a

recent LR analysis of a similar dataset [19]. Although this finding

may seem surprising based on earlier reports that found the pI to

be an important physical factor in protein crystallization [5,40,41],

the discrepancy likely results from the selection bias of standard

screens (like those analyzed here) in favor of conditions that are

expected to reduce protein solubility for most proteins. These

screens avoid pairing low-salt and extreme-pH conditions, which

result in unscreened similarly charged proteins. Were these

conditions present, they would likely statistically emphasize the

physical importance of pI in protein crystallization.

It is important to note that the GPR model is able to capture all

the significant trends spotted by previous LR models [19]. In

particular, it identifies the role of alanine and glycine (as small

residues), of phenylalanine, and of sSCE in promoting crystalli-

zation. The other variables that were identified as important in the

LR model of Ref. [19] but are not singled out by the GPR model,

such as lysine and sGRAVY, were actually found to be redundant

because of their strong correlation to sSCE [19]. This result

highlights the elegance with which GPR handles correlations

among the explanatory variables.

In this respect, one correlation that is inherent to our choice of

variables is that between the identity of specific residues and the

residue category to which they belong. Because we find that

residue categories impact the crystallization propensity more

significantly than most individual residues, we trained a second

GPR model using only surface residue categories and pairs of

surface residue categories as descriptive variables. This reduced

GPR model performs very similarly to the complete version, and is

also much better than LR (in 72% of the cases, Fig. 5). This

analysis suggests that a coarsened description employing only

residue categories could serve as a first approximation to

understanding and tuning protein crystallization using mutagen-

esis.

GPR: Independent crystallization mechanisms
The complete GPR model also reveals the presence of

crystallization hot spots, i.e., regions of x that give a high j. In

order to locate these hot spots, we select the proteins from the NESG

sample in the top 5 percentile for crystallization propensity

(jwj95%~0:1) as starting points for searching the protein

property space. We specifically explore how j changes when

moving away from these starting points by changing the surface

residue composition (see Method section for search details).

Figure 6 presents the hot spots projected on the sSCE and surface

hydropathy (sGRAVY) plane. These two variables are thought to

strongly influence the ease with which a protein crystallizes

[20,38,42]. We divide the plane in quadrants using the NESG

dataset’s average sSCE and sGRAVY as delimiters. Interestingly,

the model predicts high j regions in all four quadrants, but some

of these regions are not biologically reasonable for actual proteins

and should therefore be discarded. The crystallization propensity j
is indeed a mathematical object with no physical constraints, and

hence can be defined for any combination of properties x.

Propensity maxima that are ‘‘unbiological’’, such as proteins

whose surface is constituted of a single amino acid, can therefore

be found. To obtain an estimate of the property range

corresponding to actual proteins, we locate on the sGRAVY-

sSCE plane a set of 1,619 distinct monomeric proteins, i.e.,

proteins whose crystal contacts are not biologically-driven,

reported in the PDB that (as of October 2013) were high-

resolution (v2 Å) and had less than 90% sequence similarity. As

shown in Figure 6, these proteins cover only a small region of the

sGRAVY-sSCE plane, locating only two biologically-relevant

high-propensity regions. First, a high propensity region spans Q3

and Q4, corresponding to proteins with lower than average sSCE

and moderate hydrophobicity (green circle). Second, a series of hot

spots are detected in Q1 (fuchsia circle). The landscape roughness

of this second region, however, suggests that sSCE and sGRAVY

alone do not fully characterize its properties. Additional structural

variables need to be considered.

In order to get a clearer physico-chemical understanding of the

high crystallization propensity regions, we use the GPR model to

predict j for each of the 1,619 PDB proteins described above,

sorted according to the sGRAVY-sSCE quadrant to which they

Table 1. Kolmogorov-Smirnov test between high and low
crystallization propensity proteins in different sSCE-sGRAVY
quadrants.

- Q1 Q3 Q4

enriched P,PP,PH H,HH

depleted {,S{,{H,{{ S,SP,+P {P

For the different quadrants, the list of properties for which easy to crystallize
proteins (j§

~jj75%) are enriched for (or depleted in) compared to hard to

crystallize proteins (jƒ
~jj25%). Symbols as in Fig. 4.

doi:10.1371/journal.pone.0101123.t001
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belong (46% in Q1, 5% in Q2, 19% in Q3, and 30% in Q4). This

richer dataset provides a stronger signal than the NESG database

alone, but relies on the assumption that these 1,619 proteins do not

deviate too strongly from the NESG protein set. In support of this

assumption, we note that the distribution of protein properties of

the two sets do not significantly differ. From the quadrant analysis,

we obtain the distribution of surface residues for proteins that are

predicted to be easy (j§
~jj75%~0:1) and hard (jƒ

~jj25%~0:01) to

crystallize within different quadrants, save for Q2, which is too

sparsely populated. (Thresholds with a tilde refer to the

distribution of modeled crystallization propensity for the set of

1,619 PDB proteins and not to results of the NESG dataset.)

Kolmogorov-Smirnov tests determine whether the distributions of

protein properties are significantly different (p-valuev0:01)

between easy and hard to crystallize proteins within a given

quadrant (Table 1). As expected, in Q3 hydrophobicity emerges as

the major drive to crystallization. High propensity proteins are also

depleted in small residues compared to their recalcitrant

counterparts in the same quadrant, as found above. Because

these proteins are very hydrophobic, low sSCE results in proteins

that are insoluble. Easy to crystallize proteins in Q1 are enriched

for polar residues and for pairs of side chains that involve polar

residues. These proteins thus likely rely on electrostatic interac-

tions to form some of their crystal contacts. Surprisingly, they are

also depleted in negative residues, which, as discussed above, may

be an artifact of the choice of solution conditions.

Our analysis suggests that two distinct physico-chemical

mechanisms drive crystallization, depending roughly on whether

a protein has lower or higher than average sSCE. The first

mechanism is based on limited interference from side chain

entropy for hydrophobic interactions, and the second relies on the

formation of specific, complementary charge and polar interac-

tions. To test for the presence of these distinct crystallization

mechanisms in an independent way, we analyzed protein crystal

contacts (see definition in Methods). These contacts carry the

structural signature of the interactions that drive crystal formation.

A Kolmogorov-Smirnov test revealed marked differences in

residue and residue pair distributions for proteins belonging to

different quadrants, especially between the low-sSCE proteins in

Q1 and the high-sSCE proteins in Q3 and Q4 (Table 2). Q1

proteins are enriched for charged and polar residues, while Q3

and Q4 proteins are enriched for small and hydrophobic residues.

Q3 and Q4 can be further distinguished from each other by the

higher frequency of hydrophobic (in Q3) vs polar (in Q4) residues

present in crystal contacts. Given these results we confirm that Q1

proteins crystallize mostly using complementary electrostatic

interactions (enriched for positive-negative pair residues), Q3

using backbone-backbone (enriched for small-small pair residues)

and hydrophobic interactions, and Q4 using both backbone-

backbone and polar interactions. The fact that such a distinction

can be made is particularly remarkable because different crystal

contacts of a protein may, in general, involve more than one type

Figure 5. A: Scatter plot of the regression residuals as a function of the observed output function fobs for the complete GPR model (blue circles), the
reduced GPR model with only residue categories as variables (green triangles), and the standard LR model (red squares). B: Histogram of the residuals
in A that quantifies the quality of the GPR fits.
doi:10.1371/journal.pone.0101123.g005

Figure 6. Projection of the average predicted propensity j over
the sGRAVY-sSCE plane. Blue lines divide the plane in four
quadrants (Q1, Q2, Q3, and Q4) based on the average sGRAVY and
sSCE of the proteins in the NESG database. Cyan pluses represent the
projection of the 1,612 structures downloaded from the PDB, whose
distribution is used to generate Tables 1 and 2. The green circle broadly
indicates the region where the sSCE is the main driving force to
crystallization, while the fuchsia circle indicates the region where
specific chemical complementarity plays a more significant role. The
model also captures the reduction in propensity associated with limited
protein solubility at very low sSCE.
doi:10.1371/journal.pone.0101123.g006
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of interactions [30], which, through averaging, should weaken the

statistical signature of this effect.

From the analysis above, we note (i) that reducing sSCE is not

the only pathway to generate less recalcitrant mutant, and (ii) that

proteins with low sSCE are not necessarily easier to crystallize.

Our findings suggest that, depending on the level of sSCE,

proteins crystallize using two different sets of physico-chemical

mechanisms. At high sSCE, crystallization relies mostly on the

enthalpic gain of forming favorable electrostatic interactions, such

as salt-bridges or polar interactions; at low sSCE, the reduced

entropic cost of freezing small residues as well as the hydrophobic

effect appear to be the driving forces. For the latter group of

proteins, if reducing solubility is necessary to form protein crystals,

the mutagenic strategy proposed by SER is more likely to be

successful. For proteins with higher sSCE, however, too many

mutations may be necessary to reach a range of sSCE that

promotes crystallization. Mutating a few selected residues that can

trigger electrostatic interactions may then be a more effective

strategy. For example, replacing small residues with polar residues

or mutating charged side chains that are found next to oppositely

charged side chains could help promote inter-protein electrostatic

interactions.

GPC: Solution conditions for different crystallization
mechanisms

In order to test whether the two main crystallization mecha-

nisms identified above are optimized by distinct sets of solution

conditions, we trained four separate GPC models on the NESG

dataset. Separately for Q1 and Q3, we considered proteins with

higher (jwj50%~0:04) and lower (jvj50%) than average

propensity. We were particularly interested in the solution

conditions that help crystallize recalcitrant proteins from the Q1

(electrostatic mechanism) and the Q3 (SER/hydrophobic mech-

anism) quadrants. The relative abundance of statistically signifi-

cant solution properties in the Q1 model for recalcitrant proteins

indicates that the response of Q1 proteins to changes in solution

conditions is more complex than that of Q3 proteins. This

observation is consistent with chemical interactions in Q1 being

more heterogeneous and thus responding to specific solution

conditions. In this context, the ionic strength and the presence of

high-valency ions (with charge +2 or +3) seem to play

particularly important roles (Table 3). The capacity of certain

high-valency ions to coordinate proteins at crystal contacts [43] or

to bind proteins active sites may partly explain this sensitivity.

Even more compelling evidence for the heightened importance

of the crystallization conditions in Q1 compared to Q3 is the

crystallization response to changes in solute concentration (Fig. 7).

Trained GPC models allowed us to extend the results reported in

the NESG database and to explore how the probability of successful

crystallization, p, is affected by the solution features. Although

predictions for solution conditions that are very different from

those experimentally tested have a high uncertainty and are

essentially meaningless, for conditions similar to those used in the

training set, the model may actually enrich that information. We

specifically consider the predictions based on the molarity ci of a

given additive i (see Methods). As a first approximation, we fit each

of these trends to a second-order polynomial

p(ci)~a0za1ciza2c2
i . By definition, a0 is the probability that

the protein crystallizes without additives, while a1 and a2 qualify

the crystallization probability dependence on the additive

concentration. The behavior of the model can be visualized as a

scatter plot where each symbol represents the response of a given

protein to a given salt (Fig. 7). (The lower-left quadrant is empty

because monotonically decreasing trends are excluded from this

analysis.) The upper-left quadrant corresponds to proteins whose

probability to crystallize is highest at intermediate concentration,

and the lower-right quadrant to those that crystallize more easily

under either very high or very low additive concentrations (insets

in Fig. 7). (Recall that the underlying data is based on the visual

observation of crystals in samples where one or more crystalliza-

tion conditions out of typically many has proceeded to provide

structural data. Not every crystal in every experiment is examined

by X-ray (or UV imaging) and it is thus possible that crystals

forming in high salt conditions are actually salt crystals.) Additives

to Q1 proteins span the upper-left quadrant fairly broadly, which

suggests a high heterogeneity in optimal additive concentrations.

Most additives to Q3 proteins tend to have small values of a2 and

positive a1, corresponding to a nearly linear response. Interest-

ingly, many more salt types result in non-decreasing trends for Q1

than for Q3 proteins, i.e., there are more blue than red symbols.

Tuning salt type and concentration is thus likely to be a more

effective strategy to crystallize proteins in Q1 (electrostatic

mechanism) than those in Q3 (SCE/hydrophobic mechanism).

In other words, for Q1 proteins tuning crystallization conditions

should be sufficient to obtain a crystal, whereas a target protein

belonging to Q3 may need more invasive mutagenic approaches if

it does not crystallize from standard screens. Reciprocally, if a Q3

protein crystallizes in a standard screen, it is likely to produce hits

in several conditions. Interestingly, the two highly-crystallizable

NESG proteins, which crystallized in more than 30% of conditions

(PDB ids: 2OYR and 2PGX, Fig. 1), belong to this category.

The model’s optimal salt and PEG concentration for each hard

to crystallize protein in Q1 and Q3 varies by quadrant (Fig. 8). For

Q3 proteins, adding salt rarely improves the probability to

crystallize (4 out of 42 proteins) and, when it does, high salt

concentrations are preferred. By contrast, the crystallization

probability of more than 40% of Q1 proteins is improved by the

presence of salt (at concentrations between 0.1 and 1 M). Once

again, these predictions support an electrostatics-dominated

mechanism for Q1. Most of the optimal conditions for these

Table 2. Kolmogorov-Smirnov test for crystal contact distributions.

enriched Q1 Q3 Q4

Q1 +,{,++,+{,+P,+H,{{,{P,{H +,{,++,+{,+P,+H,{{,{P,{H

Q3 S,H,SS,S+,S{,SP,SH,PH,HH H,SS,HH

Q4 S,SS,S+,S{,SP,SH,PP +,{,P,++,+{,+P,{P,PP

Enrichment for specific properties of the crystal contacts of the proteins belonging to different sSCE-sGRAVY quadrants. For example, position (Q1,Q3) lists the
properties for which proteins in Q1 are enriched compared to proteins in Q3. Note that the pairs here indicate interactions between residues on different chains rather
than neighboring residues on the same chain. Symbols as in Fig. 4.
doi:10.1371/journal.pone.0101123.t002
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proteins cluster by salt type (contiguous patterns along the

horizontal axis). Because salt types are ordered by cation, the

clustering of the results suggests that the crystallization of Q1

proteins is more sensitive to the type of cation than to the type of

anion. PEG also results in distinct crystallization patterns for Q1

and Q3 proteins. The former prefer high concentrations of large

PEG molecules, while the latter heterogeneously respond to the

presence of PEG, both size- and concentration-wise. These results

suggest that the successful crystallization of Q1 proteins requires a

wide sampling of salt types (specifically cations) and concentra-

tions. For these proteins, it may thus suffice to tune the

crystallization conditions without resorting to mutagenesis. By

contrast, tuning the type and concentration of PEG appears to be

more effective for Q3 proteins, which are, however, generally less

sensitive to solution conditions. Mutations, such as those suggested

by SER, may then be necessary to promote crystallization.

Conclusions

Using state-of-the-art statistical techniques on a detailed

database of protein crystallization experiments coupled with

extensive information on those proteins and their resulting

structures, our study recapitulates, with a single model, many

physico-chemical factors that independent studies have related to

crystallization propensity, and detects the correlations between

these variables. In addition, our model distinguishes two main

mechanisms that drive monomeric protein crystal assembly. One

is mainly entropic and exploits low side chain entropy and

hydrophobicity; the other is energetic and relies on complemen-

tary electrostatic interactions. The key contribution from electro-

static interactions provides further evidence that crystal contacts

have a specific physico-chemical signature even if they are not

Table 3. Significant experimental conditions for hard-to-crystallize proteins belonging to Q1 and Q3.

Q1, jvj50% Q3, jvj50%

property l property l

IS 1.00 Cadmium 1.00

PEG 10000 1.00 Nickel 1.00

Citrate 1.00 Cesium 1.00

PEG 5000 1.00 Pyrophosphate 1.09

Strontium 1.00 Succinate 1.11

Nickel 1.03 Iodide 1.20

Tetraborate 1.04 Barium 1.45

PEG 200 1.04 Fluoride 1.47

Tartrate 1.05 Samarium 1.73

Triphosphate 1.05 Copper 1.84

Samarium 1.06 PEG 200 1.84

Copper 1.12 Tetraborate 1.87

Iron 1.13 Iron 1.99

Iodide 1.19 PEG 2000 2.21

Barium 1.49 Triphosphate 2.34

Cesium 1.64 PEG 5000 2.64

Pyrophosphate 1.68 Zinc 3.13

Cadmium 1.72 4-aminosalycilate 4.00

PEG 1500 2.49 Gadolinium 6.38

PEG 550 2.56 Cacodylate 7.44

Most significant condition properties for hard to crystallize proteins belonging to Q1 and Q3. Properties are colored according to their classification: cation (bold), anion
(italic), PEG and others (regular).
doi:10.1371/journal.pone.0101123.t003

Figure 7. Scatter plot of polynomial parameters that charac-
terize the non-monotonic trends in crystallization probability
with concentration for different salts. Proteins belonging to Q1 are
represented by blue pluses and those belonging to Q3 by red crosses.
The insets sketch the probability trend as a function of salt
concentration for different combinations of a1 and a2 (a2v0 and
a1w0 vs a2w0 and a1v0).
doi:10.1371/journal.pone.0101123.g007
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biologically functional [30,42,44–47]. These interactions are

indeed of the same nature as those that traditionally result in

specific and thus biologically relevant interactions, such as protein

complex assembly or protein-target recognition. The knowledge

accrued over the years for these interactions [48] may thus be

useful for understanding and designing crystal contacts [33,49].

The GP-based models developed in this study also estimate the

crystallization propensity of any protein, given a set of its physico-

chemical properties, and identify mutagenesis strategies that are

more likely to yield protein crystals. For example, we find that it

may be favorable to mutate positive-negative surface residue pairs

to uncharged residues or small residues to polar ones, in order to

crystallize a recalcitrant Q1 protein, whereas SER guidelines may

be more useful for crystallizing Q3 proteins. In addition, using

data from crystallization screens, an improved set of solution

conditions can be determined given some of the protein surface

properties. For example, fine-tuning salt concentration and cation

type appears to be an effective strategy for proteins with higher

than average sSCE. In contrast, using a high salt concentration

and the addition of PEG appear to be more effective approaches

for crystallizing proteins with lower than average sSCE.

Although our analysis cannot be directly applied to de novo

protein crystallization, a coarse Q1/Q3 classification may still be

possible based on a protein’s average SCE, which linearly

correlates to its sSCE and can be determined from the primary

structure. This approximate assignment may narrow down which

one of the two main crystallization approaches is more likely to be

successful. More precise and complete structural information, e.g.,

residue types and pairings, could also be obtained by combining

different (imperfect) protein folding algorithms [50]. For example,

relatively precise estimates of sSCE can be calculated from

available computational tools, such as PredictProtein [51]. It

should thus be possible to compute from sequence information

alone what residues are likely to be exposed and, consequently, to

estimate the protein properties that the GPR and the GPC models

need to predict its crystallization propensity and optimal

crystallization conditions. Future studies will integrate the current

models with algorithms that estimate these properties, and assess

their experimental success.

Finally, the accuracy of any statistical model depends on the

quantity and quality of the training set. Our findings emphasize

the need for an increased availability and standardization of

protein crystallization datasets [8]. A richer characterization of the

experimental outcomes would also extend the reliability of these

models. For example, different successful crystallization conditions

can yield distinct crystal forms and thus crystal contacts for the

same protein. The availability of crystal symmetry and contact

information for different conditions would refine our understand-

ing of the correlation between experimental conditions and the

(solution mediated) protein-protein interactions that drive crystal-

lization. Similarly, unsuccessful conditions could be defined more

finely depending on whether a protein remained soluble or gelled.

Interpreting this data in light of phase diagrams would further

clarify the physico-chemical basis for protein crystallization and

guide future experiments. It is thus reasonable to anticipate that

the extension of statistical models and the increased availability of

training datasets will help guide biomolecular crystallization

toward a more rational basis.

Methods

Data
The crystallization database reports binary crystallization

outcomes in 198 samples of 182 unique proteins from the NESG

(list of PDB IDs in Materials S1) each in 1,536 solution conditions

in microbatch under-oil experiments conducted at the Hauptman-

Woodward Medical Research Institute High-Throughput Crys-

tallization Screening (HTS) laboratory. The concentration of the

various chemicals, proteins, and pH are reported. The solution

conditions span six generations (generations 5 to 9) of the cocktails

used in the HTS center with approximately half the conditions

representing commercially available crystallization screens and the

other half an incomplete factorial sampling of chemical space [6].

Most experimental conditions fall into two categories: moderate to

high salt alone, and low salt with PEG representing typical

crystallization strategies. Although a total of 311 different

chemicals are used, we focused on the effect of ions (divided in

19 cations and 24 anions) and 13 types of PEG for a total of 56

analyzed chemical species. The pH distribution is slightly biased

towards lower values (mean pH~6:8). The chemical species

concentrations are combined to obtain the ionic strength of the

solution (IS), a Hofmeister series coefficient (HSa for anions and

HSc for cations) and a depletion effect coefficient (DEP),

Figure 8. Optimal conditions for low crystallization propensity proteins in Q1 (upper side) and Q3 (lower side) for various salt types
(molar concentration) and PEG types (% mass concentration). Proteins are ordered by sSCE; salt types are ordered by cation (ammonium,
calcium, lithium, magnesium, manganese, potassium, rubidium, sodium, zinc, barium, cesium, cobalt, copper, iron, gadolinium, nickel, samarium,
strontium, cadmium) and, within each cation, by anion (citrate, malonate, succinate, tartrate, acetate, bromide, cacodylate, carbonate, chloride, citrate
tribasic, fluoride, formate, iodide, molybdate, nitrate, phosphate monobasic, phosphate dibasic, phosphate tribasic, pyrophosphate tetrabasic, sulfate,
tetraborate, thiocyanate, thiosulfate, 4-aminosalicylate); and PEG types are ordered by molecular weight (200, 400, 550, 1000, 1500, 2000, 3350, 4000,
5000, 6000, 8000, 10000, 20000 g/mol).
doi:10.1371/journal.pone.0101123.g008
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where ci is the species concentration, Zi the ion charge, Rp is the

solvated protein radius of gyration, Mi is the PEG molecular mass

[52–55], and hsi is a Hofmeister index that ranks the species from

more to less kosmotropic (cations: ammonium, cesium, rubidium,

potassium, lithium, sodium, barium, magnesium, manganese, zinc,

cadmium, calcium, cobalt, copper, nickel, strontium, iron,

gadolinium, samarium; anions: triphosphate, tricitrate, sulfate,

tartrate, carbonate, thiosulfate, diphosphate, succinate, citrate,

acetate, malonate, fluoride, formate, chloride, bromide, iodide,

monophosphate, thiocyanate) [56].

It is important to note that the data comes from samples that

produced hits in crystallization screening and then went on to yield

a structure deposited in the PDB. Crystal hits that yielded no

structural data are beyond the scope of our analysis. For the 182

proteins studied, 29% gave hits in ten or fewer of the 1,536

different chemical cocktails but 18% gave hits in 100 or more

cocktails. Typically only the best set of initial conditions go

forward to optimization, hence we have no data on how well a

crystal may have diffracted when grown in one of the other

solutions. In this analysis we also give equal weight to each

crystallization hit, which introduces additional noise in the data. It

is also important to note that the protein samples were all prepared

in a common buffer, which reduces the number of solution

variables.

PyMol was used to determine the structural characteristics of

each protein from its PDB structure: the fraction of the protein

surface carrying each residue (a residue was considered exposed if

at least 2.5 A2 of its surface is exposed), the solvent accessible

surface area (SASA), the radius of gyration, and the isoelectric

point (pI). Global and surface values for the grand average of

hydropathicity index (GRAVY) (measure of hydropathy) [57], the

polarity (POL) coefficients [20], and the side chain entropy (SCE)

[20,58] were obtained by averaging the value for each residue,

respectively in the protein and on the protein surface (Fig. 1). Note

that we defined the magnitude of sSCE such that more flexible

residues have a higher sSCE, which is opposite to the definition of

Ref. [58].

The residues were clustered in categories: small (G, A),

positively charged (H, R, K), negatively charged (D, E), polar

(C, S, T, N, Q) and hydrophobic (L, I, V, F, Y, M, W, P). To

incorporate the first many-body correction, we also determined

the number of neighboring (within 5 Å of each other) residue

categories (small-small, small-polar, and so on) normalized over

the total number of neighboring pairs. These variables were used

both in absolute number and weighted by their solvent accessible

area, because more exposed residues may play a larger role than

less exposed ones in protein crystallization. Note that these

predictive variables are not all independent and some have to

satisfy certain constraints. In particular, the surface fraction

covered by each amino acid type has to sum up to 1, and, given

the surface amino acids, sGRAVY, sSCE, and sPOL are uniquely

determined.

Combining this information generates two sets of data. The first

associates a crystallization propensity (fraction of successful

experiments) to each protein characterized by 89 protein features

(Fig. 1). The second reports the success or failure of each

experiment for each protein (254,623 experiments in total)

characterized by the solution conditions (61 cocktail features)

and the protein features for a total of 150 predictive variables. The

data is available upon request.

Crystal contacts analysis
Similarly to previous studies [20], we defined crystal contacts as

the regions on the proteins surface that are within 5 Å from

surface residues on a neighboring chain in the protein crystal. To

identify the crystal contacts, we used PyCogent [59], whose

structural biology tool-kit is an extension of PDBZen [20]. In-

house Python scripts classified the properties of each crystal

contact.

Statistical model
In standard linear and generalized linear models, the response

variable y, whether continuous or discrete, is a function s of a

linear combination of the predictive variables x

y~s(xT w)zE, ð5Þ

where w indicates the weights of the variables and E is the

uncertainty of the model. A non-linear dependence among the

predictive variables cannot be captured by this framework.

Gaussian processes discard the assumption of linearity and place

a prior on any possible functional form, giving more flexibility to

the model. In contrast to deterministic methods (such as Support

Vector Machine), GP are Bayesian, which means that they assign

a probability distribution to the response variable and provide a

confidence interval on the predicted value. In the following, we

briefly summarize GP regression and classification. More details

can be found in Ref. [31].

In the simplest version of GP inference, the latent function f (x)
replaces the linear dependency in Eq. (5). The prior on f is

p(f Dx)*N(0,K), ð6Þ

where N(0,K) indicates a multinormal distribution with zero

mean and covariance matrix K . Among the several available

options for K , we opt for the widely used squared exponential, so

that

K(xi,xj)~exp({c(xi{xj)P(xi{xj)
T ), ð7Þ

where c and the diagonal matrix P are (hyper-)parameters that

have to be optimized. In particular, each element pi of the

diagonal of P can be related to the typical length scale li of

variable i as pi~l
{1=2
i . Large li correspond to less important

variables, while a small li identifies a variable whose variation

strongly affects the response variable. For the scope of this study,

we arbitrarily defined variables to be significant if lv100, which is

roughly the half point between the largest and the smallest length

measured in logarithmic scale.
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GPR. In GPR, the response variable is defined as f ~f (x).
The predictive probability over a test set xtest, given a training set

(xtrain,ftrain), is p(ftestDxtest,xtrain,ftrain)*N(f̂f ,K̂K), where

f̂f ~mzK(xtest,xtrain)K(xtrain,xtrain)(ftrain{m)

K̂K~K(xtest,xtest){K(xtest,xtrain)K(xtrain,xtrain)K(xtrain,xtest),

in which m is the mean of the observed response variable over the

training set. Sampling the predictive distribution provides predic-

tions on the response variable f .

The hyper-parameter selection is performed by optimizing the

marginal log-likelihood

log½p(ftrainDxtrain,c,P)�~{
1

2
½f T

trainK{1ftrain{logDK D{nlog2p�,ð8Þ

where n is the sample size. By determining the gradient of the

marginal log-likelihood, any conjugate gradient optimization

method can be used to locate local maxima. The marginal log-

likelihood was maximized by sampling pi according to a beta

distribution with a shape parameter of 0.5. For each initial

condition of the hyper-parameters, we performed a conjugate

gradient search to identify the corresponding local maximum

(Fig. 2A).

We used GPR to study the protein crystallization propensity.

Because the propensity ranges between 0 and 1 by definition, a

brute-force regression is not appropriate (f ’s domain is the whole

real line). A possible solution to the problem is to link

crystallization propensity j and f using a sigmoidal function.

The drawback of this approach is that very low propensity values,

which are by definition affected by large relative uncertainty,

correspond to large negative values of f . As a result, the inference

process gives poorer predictions for proteins that are easy to

crystallize. Because these proteins are of greatest interest to us, we

opted instead for f ~
j

1{j
. Although small nonphysical negative

values of propensity are then allowed, this transformation is close

to linear for small values of f and emphasizes the contribution of

high-propensity proteins. In order to have all the predictive

features on a similar scale (each of them spans very different ranges

of values), we scaled each feature according to their mean and

standard deviation (z-scores). Length scales li then correspond to

the actual significance levels of each property.

The search for hot spots, which identifies features that maximize

protein propensity, was performed by laying down a grid over the

feature space with a fineness that depended on the length scale of

the corresponding dimension. For variable with liv100, four

equidistant points in the physical range were used, and otherwise

only the mid value was used. Although not exhaustive, trials with

finer grids did not detect additional maxima.
GPC. In GP binary (success/failure) classification, the prob-

ability of success p is connected to the latent function f by

p(x)~w½f (x)�, ð9Þ

where w is a sigmoidal function, such as logistic or probit. A

prediction for p can be obtained in two steps. First, the distribution

of the latent variable f over a test case has to be computed using a

training set (xtrain,ytrain), where xtrain indicates the explanatory

variables values in the set and ytrain the corresponding success/

failure outcome.

p(ftestDxtrain,xtest,ytrain)~

ð
p(ftestDxtest,f )p(f Dxtrain,ytrain)df ,

where the posterior distribution is p(f Dx,y)~p(yDf )p(f Dx)=p(yDx).
Second, the probabilistic prediction is obtained

p(xtrain,xtest,ytrain)~

ð
w(ftest)p(ftestDxtrain,xtest,ytrain)dftest:

Unlike for GPR, these integrals cannot be simplified because of

the non-Gaussian form of w. As a result, either analytical

approximations or numerical methods must be used. In this

study, the problem is further complicated by the large size of the

dataset (each sample corresponds to a different experiment), which

makes any computation involving the GP prior matrix P
intractable. To bypass this problem, we adopted the sparse

approximation method implemented in Ref. [60] (Informative

Vector Machine), which relies on incremental Gaussian approx-

imations of the posterior distribution to provide parameter

optimization for a probit GP classification.

To determine the best classification model, we constrained the

parameters of the protein properties to their GPR values, and

maximized the marginal log-likelihood over the parameters

corresponding to the solution conditions. The log-likelihood

maximum search used a conjugate gradient algorithm starting

from different initial values sampled according to a beta

distribution with shape parameter 0.5.

In the GPC analysis reported in the Results section, we focused

on how p is affected by the concentration of each individual

additive. In this case, for a given additive i of concentration ci, we

determined p(ci)~p(xi), where the solution feature vector xi

corresponds to a condition with neutral pH, additive i concentra-

tion set to ci, and all the other additive concentrations set to zero.

The ionic strength (IS), Hofmeister series parameters (HSc and

HSa), and the depletion parameter (DEP) were then determined

given additive i’s properties and concentration as defined in

Equations (1), (2), (3), and (4).

Supporting Information

Materials S1 List of the PDB ids of the proteins used in
this study.

(PDF)
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