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Metals in Biology

From the MetalsPDB Website out of 150,149
models examined in the Protein Data Bank, 57,494
of those models have metals (over 38%)

The top six are:
. Zn (~26%) B
* Mg (~25%)
+ Ca (~19%)
. Fe (~15%)
. Na (~14%)
« Mn (~6%).

Over 86% of the sites are mono-
nuclear, ~10% bi-nuclear, just

over 2% tri-nuclear and the
remainder greater.




Metalloproteins

Unknown metal atoms

« Many proteins (especially enzymes) contain small
numbers of metal atoms

- Often critical for mechanism
- Also common for them to help in maintaining structure
- Present in 30-40% of all proteins

« X-ray crystallography measures electron density

« But ... cannot accurately determine atomic number
unless anomalous techniques are used

« The metal is often inferred indirectly from knowing
Initial conditions, looking to homologous structures,
examining geometry, and or molecular modeling
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How do we know there Is a problem?

In 1994, 25% of the models in the protein data bank also
had the experimental data deposited.

By 1996, that reached over 50%.

In 2008 it became mandatory to deposit the experimental
data supporting any model that was produced.

With the experimental data we can visualize the problem
by looking at the data in addition to the model.



Two maps are typically used Electron density

produced with the observed structure A indicatesan NV
factors, F,, and the calculated over modeling
structure factors F..

Tryptophan

These maps are are.: _
residue

« The 2F, map (usually displayed in blue)
* The F,-F. map (positive in green, negative in
red)

The X-ray scattering by any atom is
proportional to the square of its atomic

number < .-tI“! Model agrees

0 \ith observed

Where the model is wrong, the F_-F. map data

will have:

« Positive density (green) if there are atoms
that have not been modeled or have too
low an atomic number

* Negative density (red) if there is a modeled
atom that is not there, if it has an
occupancy less than the model, or if itis a
lighter atom.

Electron density from
an unmodeled region




We built a suite of routines called Alchemy (a kind of thinking that
leads to a way of understanding — Marcel Duchamp, 1887-1968)

1. Read the structural model and experimental scattering factor data

2. Calculate 2F -F. and F -F,. map for the model and data (if present, calculate
the anomalous map).

3. Integrate the difference data in a sphere around atoms of interest and
calculate the real space Z-score.

4. Automagically produce images of the maps and model around the metal
environment.

5. Tabulate the results.



In the existing data, Is
there a problem and
how big Is It?

* Give Alchemy a list of every
metalloprotein structure
deposited in the PDB.

e Let it run for about 1 month
(mostly image generation).

« Tabulate the results.




Examples of the Alchemy output

Examples

from metalloprotein =—»
Groups (even they

have problem days)
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The PDB_REDO server for macromolecular
structure model optimization
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The refinement and validation of a crystallographic structure model is the last
step before the coordinates and the associated data are submitted to the Protein
Data Bank (PDB). The success of the refinement procedure is typically assessed
by validating the models against geometrical criteria and the diffraction data,
and is an important step in ensuring the quality of the PDB public archive
[Read er al (2011), Structure, 19, 1395-1412]. The PDB_REDO procedure
aims for ‘constructive validation’, aspiring to consistent and optimal refinement
parameterization and pro-active model rebuilding. not only correcting errors
but striving for optimal interpretation of the electron density. A web server for
PDB_REDO has been implemented, allowing thorough. consistent and fully
automated optimization of the refinement procedure in REFMAC and partial
model rebuilding. The goal of the web server is to help practicing crystallo-
graphers to improve their model prior to submission to the PDB. For this,
additional steps were implemented in the PDB_REDQ pipeline, both in the
refinement procedure, e.g. testing of resolution limits and k-fold cross-validation
for small test sets, and as new validation criteria, e.g. the density-fit metrics
implemented m EDSTATS and ligand validation as implemented m YASARA.
Innovative ways to present the refinement and validation results to the user are
also described, which together with auto-generated Coor seripts can guide users
to subsequent model inspection and improvement. It is demonstrated that using
the server can lead to substantial improvement of structure models before they
are submitted to the PDB.

1. Introduction
Crystallographic structure elucidation is a stepwise process
with many decision points, and is therefore complex and
labour-intensive. Over the years, this process has become
more and more streamlined by automation. The crystallo-
graphic process, starting from the diffraction experiment itself,
has greatly benefitted from faster computers and advances in
crystallographic software. Automated pipelines are available
for data reduction (e.g. Otwinowski & Minor, 1997; Vonrhein
etal., 2011; Krug et al,2012; Monaco et al., 2013; Winter et al.,
2013), experimental phasing (e.g. Panjikar et al, 2005;
Terwilliger et al, 2009; Pannu et al, 2011), molecular
replacement (e.g. Keegan & Winn, 2007; Long et al., 2008;
McCoy et al, 2007), density-map tracing and model building
(e.g. Perrakis et al, 1999; loerger & Sacchettini, 2002; Cowtan,
2006; Terwilliger et al, 2008) and combinations thereof {e.g.
Brunzelle er al, 2003; Holton & Alber, 2004; Kroemer et al.,
2004).

The PDBE_REDO pipeline (Joosten et al., 2012) focuses on
automating the final steps of the crystallographic process, ie.
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Statistical quality indicators for electron-density

maps

The commonly used validation metrics for the local agreement
of a structure model with the observed electron density,
namely the real-space R (RSR) and the real-space correlation
coefficient (RSCC), are reviewed. Itis argued that the primary
goal of all validation techniques is to verify the accuracy of the
model, since precision is an inherent property of the crystal
and the data. It is demonstrated that the principal weakness of
both of the above metrics is their inability to distinguish the
accuracy of the model from its precision. Furthermore, neither
of these metrics in their usual implementation indicate the
statistical significance of the result. The statistical properties
of electron-density maps are reviewed and an improved
altemnative likelihood-based metric is suggested. This leads
naturally to a © significance test of the difference density
using the real-space difference density Z score (RSZD). This
is a metric purely of the local model accuracy, as required
for effective model validation and structure optimization by
practising crystallographers prior to submission of a structure
model to the PDB. A new real-space observed density Z score
(RSZO) is also proposed: this is a metric purely of the model
precision, as a substitute for other precision metrics such as
the B factor.

1. Background

Global metrics of accuracy of the structure model (such as
Rirec) do not identify local errors in a model. A better metric
of local accuracy of the model is consistency with the electron
density in real space. This assumes that the electron density
itself, and therefore the phases from which it is derived, are
accurate. This is a reasonable assumption because density-
based validation is normally performed near the completion of
refinement when the model is mostly correct and only a small
number of minor errors remain to be resolved.

2. Outline
2.1. Review existing real-space electron-density metrics

(i) Real-space R (RSR).

(i) Real-space correlation coefficient (RSCC).

(1) Why both these metrics are sub-optimal as validation
metrics.

(iv) What are the characteristics of an optimal metric?

2.2, Other issues related to current implementations of RSR
and RSCC

The sensitivity of any real-space metric of electron density
depends critically on the following.

Received 10 June 2011
Accepted 2 September 2011

454 doi:10.1107/50907 444911035918

Acta Cryst. (2012). D68, 454467



A

10 | Pants on fire region

MUSE score (sigma)

metal sites in the PDB

6sigma  \Worry

3sigma Concern

0 20,000

40,000 60,000 80,000 100,000 120,000

Metal site

35,287 individual PDB models. 158,791 metal sites

140,000

6,607 (4%) > 10 sigma
Just plain wrong!

20,764 (13%) > 6 sigma
Worry, need to be
corrected

56,109 (35%) > 3 sigma
Concern and should be
verified

MUSE (Metal Uncertanity ScorE) = Max(|Ap|)/o(Ap) = real space difference density score

AYNNN

%%

\Si




Sodium

18,341 Na sites
24% > 3 sigma
8% > 6 sigma

2% >10 sigma

Magnesium

56,860 Mg sites
35% > 3 sigma
12% > 6 sigma
3% >10 sigma

Potassium

6,348 K sites
32% > 3 sigma
11% > 6 sigma
2% >10 sigma

Calcium

31,429 Ca sites
43% > 3 sigma
18% > 6 sigma
7% >10 sigma

Manganese

9,765 Mn sites
35% > 3 sigma
12% > 6 sigma
4% >10 sigma

Iron

3,179 Fe sites
40% > 3 sigma
16% > 6 sigma
6% >10 sigma

Nickel

2,749 Ni sites
56% > 3 sigma
29% > 6 sigma
12% >10 sigma

Cobalt

1,544 Co sites
52% > 3 sigma
25% > 6 sigma
10% >10 sigma

Copper

3,212 Cu sites
42% > 3 sigma
16% > 6 sigma
5% >10 sigma

Zinc

31,429 Zn sites
43% > 3 sigma
18% > 6 sigma
7% >10 sigma

Similar numerical
trends are seen with
al metal sites.

The worst cases are
NI and Co.

The trends are
worrying.



A good experiment can identify the metal
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Measurements before or
during data collection can
identify if a metal is present
and what that metal is.



“There are lies, damn lies,

and statistics”, Benjamin
Disraeli, 1804-1881
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Use an atomic technique to directly measure the metal

Graphic from Sarah Bowman



PIXE

(not PIXIE)




Seal for sample chamber

Calibration
samples

PIXE - Particle Induced Emission of X-rays

) 3

Sahp|e

An atomic technique independent of the state of the et s |
sample L |
The Surrey lon Beam Centre in the UK provides the ; Beam f
only proton microprobe facility in the world with : Sample stick ,
developed capability for high-throughput protein o) - S
analysis.

Backscattering X-ray

particle detector detector

Graphite
Faraday

Quadrupole
lenses
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,J\enses
%

microscope
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Particle Induced X-ray Emission (PIXE) (and energy dispersive X-ray emission The PIXE experimental setup

spectroscopy (EDX)) require only pico- or nanoliter sample volumes.
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ABSTRACT: Metalloproteins comprise over one-third of P77 ;ﬁ, n’;
8 W | i)

proteins, with approximately half of all enzymes requiring
metal to function. Accurate identification of these metal atoms
and their environment is a prerequisite to understanding
biological mechanism. Using ion beam analysis through particle
induced X-ray emission (PIXE), we have gquantitatively
identified the metal atoms in 30 previously structurally
characterized proteins using minimal sample volume and a
high-throughput approach. Over half of these metals had been
misidentified in the deposited structural models. Some of the
PIXE detected metals not seen in the models were explainable

as artifacts from promiscuous crystallization reagents. For others, using the correct metal improved the structural models. For
multinuclear sites, anomalous diffraction signals enabled the positioning of the correct metals to reveal previously obscured
biological information. PIXE is insensitive to the chemical environment, but coupled with experimental diffracton data
deposited alongside the structural model it enables validation and potential remediation of metalloprotein models, improving

structural and, more importantly, me chanistic knowledge.

1. INTRODUCTION

Metals are important in biology with over one-third of all
proteins having one or more metal ligands plying a key
structural or catalytic role’ critical for the progression of many
diseases and attractive for therapeutic interve ntion” The
correct identity and accurate stoichiometry of these ligands are
wvital biophysical data for characterizing proteins and under-
standing mechanism, but there is currently no widely accepted
standard metal assay. If the structural model is lmown,
circumstantial evidence from the model is used, but this has
been shown to be unreliable, particularly at low resolutions.”
For models determined by X-ray crystallography or similar
resolition techniques, the choice of metal made at the
refinement stage affects the restraints, biasing the final
structure. There are sophisticated techniques that make use
of anomalous signals in the structure factors which allow for
element identification’ independent of particle mduced X-ray
emission (PIXE) data. However, these require a knowledge of
the expected elemental species and use multiple refinements,
comparing the models produced for the different species, or

< ACS Publications 209 Amescan themical Society 185

the use of multiple incident X-ray wavelengths. When no
structural information is available, biinformatic approaches
can be usd:df' but experimental measurement is not part of
routine characterization protocols.

To identify and quantitate the metal content of protemns, the
limit of detection (LoD) required is a single metal atom in a
L0 kD'a macromolecule or 500 ppm by dry weight Current
methods for metal identification (reviewed by Hare et al”)
include wet a.asa}.-'s,!= mass spmrnmmryq and K-raym or
electron based characterization'' and imaging,'* and various
combinations of these.'** The former rely on detecting
chemical compounds bound to metal atoms but can only
detect one species at a time. Mass spectrometry is sensitive, but
results can be degraded by partial occupancies, glycosylation,
or post- transhtional modifications. X-ray absorption spectros-
copy (XAS) requires a high sample volume and has stringent
experimen tal require ments."” Electron induced X-ray emission

Received: August 24, 2019
Published: December 3, 2019

DOk 101021 favs 09186
1 Am. Chem Soc 30, 142, 186=197



After identifying the metals combine with X-ray
crystallographic data



Different atoms have different scattering factors as a function of energy (wavelength)

3.5

/ o-Znf -+«Znf"

o-Fef -aFef"

Atomic scattering factor (e)

o-Mnf -=Mnf"

8000 9000 10000 11000 12000 13000 14000
X-ray energy (eV)

Atomis scattering factor (e)

And these scattering factors can be 1.0

calculated as a function of energy
0.5 M

0.0
8000 9000 10000 11000 12000 13000 14000
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Calculated

f” normalized to

0.64 1.00
0.45 0.69 1.00
0.39 0.55 0.87 1.00 , iy
) \y (
0.34 0.53 0.76 0.87 1.00 \ /‘,',57 5
— OO AL
> 0.15 0.23 0.33 0.38 0.43 1.00 @)
3 =
g lized Id a
Normalize (0]
g Measured . Q
Q f metal ‘Z
= Eoca. 3
3 a 9.59 1.00 Fe Co 3
@) o
s B 6.83 0.71 Fe Mn o
D v 6.81 0.71 Zn Mn o)
) a 8.42 1.00 Fe Co o
o
3 B 7.50 0.89 Fe Fe 3
D v 7.6 0.90 Zn Fe @
= a 9.11 1.00 Fe Co Q
— B 7.70 0.85 Fe Fe
v 6.28 0.69 Zn Mn

The correct metals can be assigned using the
identification and stoichiometry from PIXE with the
difference electron density from X-ray crystallography
to position them — revealed a ligand important for
mechanism.




There are currently ~3 facilities worldwide that could
perform PIXE experiments on proteins
(and only one that does)

There are ~160 synchrotron macromolecular
crystallography beamlines worldwide that could do X-
ray fluorescence methods
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X-ray
fluorescence
studies

With Aina Cohen
and Sarah
Bowman



Fluorescence scan of a NIST
1000 trace standard containing
* 500 pg/ml Zn
100 pg/ml Cu
100 30 ug/ml Fe
5 pug/ml Mn
Note Ni Ka and Br Ka signals

%) at 7478 eV and 11924 eV.

= 10

-

S The Cu K signal can be
seen in the higher energy tail
of the Zn Ka signal.

1
The step size of the
measurements is 25 eV
0.1
3000 5000 7000 9000 11000 13000

Energy (eV)



Potential of technique

Zinc

Spectrums are shown with a
Zn standard. Three plots are
shown, (a) the full spectrum,
(b) one enlarged to see a Rh
peak from a mirror, and(c)
another enlarged to show
the Zn data.

A fit to the peak height of the
Zn Ka (d) demonstrated
sensitivity down to 1 ppm.
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Sensitive to different metals
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Protein samples

The protein samples measured are shown with a (a) full spectrum, (b) enlarged spectrum of interest.
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Numbers from Experimental Data



PIXE and EDX study the protein sample, crystallographic structural models by necessity incorporate the crystallization

conditions
Total proteins

Total proteins studied
studied 90
90
80
80 Incorrect
Incorrect 70 metal
70 metal in model
50 in model 60 !
50 ! Extra Model and 50 Metal present in
metal experiment 40 crystallization
40 in model agree cocktail
30 ! 30 /
20 Other 20
10 10
0 0

48% of the models do not contain the experimentally detected metal. 15% of these can be explained by
promiscuous metals in the crystallization conditions.

33% of metals are unexplained. This is in complete agreement with the 3-sigma cutoff of the
Alchemy analysis of the 158,791 metal sites studied.



Take home message

« A computational study of over 150,000 metal sites and experimental data in the Protein
Data Bank indicates that

« An experimental atomic-based study on 90 proteins is in complete agreement with this.

« There are ~4 million downloads of structures per day, 99% of those without
experimental data.

« Over 200 data resources make use of this data.

* There are significant errors -

Final thoughts

 All that glitters is not necessarily gold

« Always do an excitation scan after
crystallographic data collection — all it costs
Is time (and not much).
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Thank you and questions?
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