Efficient High-Throughput Crystallization

Edward H. Snell and Joseph R. Luft Hauptman-Woodward Medical Research Institute

Crystallography Requires Crystals

No crystal ...

No crystallography

No crystallographer

Pessimists, Optimists, and Crystallographers

Consider a glass of water

Pessimist (the glass is half empty)

> Crystallographer (the glass is completely full)

Optimist (the glass is half full)

Fantasy

Crystallize Now

High-throughput crystallization is easy

<u>Efficient</u> High-Throughput Crystallization is hard

- Successful high-throughput crystallization approaches require efficiency
 - The methodology must be equal or better to any other methods
 - The amount of sample used should be minimal
 - The amount of information obtained needs to be maximal and interpretable.
 - The results must be useable, reproducible and if necessary scalable.
 - Single point failures must be eliminated or minimized

The Crystallization Screening laboratory at the Hauptman-Woodward Medical Research Institute

Since February of 2000 the High Throughput Search (HTS) laboratory has been screening potential crystallization conditions as a high-throughput service

The HTS lab screens samples against three types of cocktails:

- 1. Buffered salt solutions varying pH, anion and cation and salt concentrations
- 2. Buffered PEG and salt, varying pH, PEG molecular weight and concentration and anion and cation type
- 3. Almost the entire Hampton Research Screening catalog.

The HTSlab has investigated the crystallization properties of over 15,000 individual proteins archiving approximately 140 million images of crystallization experiments.

The crystallization method used is micro-batch under oil with 200 nl of protein solution being added to 200 nl of precipitant cocktail in each well of a 1536 well plate.

Wells are imaged before filling, immediately after filling then weekly for six weeks duration with images available immediately on a secure ftp server.

Several software utilities for viewing and analyzing data are available.

Outcomes

Born in Buffalo

Over 1,000 general biomedical laboratories world wide use the crystallization screening service with approximately 2,000 unique investigators.

Investigators are sent photographs of the results, analyze these images and perform their own optimization of any hits observed.

No information is released on targets. Progress is tracked by acknowledgements and citation searches. Currently no other metrics are used to measure success rates for the general biomedical community.

These images represent examples of structures from initial hits in the HTS laboratory.

Where success is tracked.

For our Protein Structure Initiative partners both success and failure is tracked. In the case of NESG our initial screening hits enable on average 80 structures per year to be deposited to the PDB.

The graph demonstrates the ramp up of operations with maximum success reached from 2006 onward.

Our success rate from protein in the door to a crystallization hit leading to a PDB deposition is **22%**.

The NESG samples represent a special case in that they are well characterized beforehand – size exclusion chromatography, mass spec analysis and dynamic light scattering studies.

In 2011 we switched to PSI Biology – More difficult targets

Old data

Number of samples screened by HTSlab

<u>Efficient</u> High-Throughput Crystallization is hard

- Successful high-throughput crystallization approaches require efficiency
 - The methodology must be equal or better to any other methods
 - The amount of sample used should be minimal
 - The amount of information obtained needs to be maximal and interpretable.
 - The results must be useable, reproducible and if necessary scalable.
 - Single point failures must be eliminated or minimized

Crystallizing Macromolecules

Many different methods but they all have things in common:

- They are designed to traverse the crystallization phase diagram.
- They use many different kinds of solutions to sample crystallization space at many points.

Which method?

- Vapor diffusion (most common)
 - Dynamic samples wide physical chemical space
 - Can use small volumes
 - Reproducible
 - Multiple experiments in one drop
- Microbatch under oil (used by our laboratory)
 - Static initial conditions highly defined
 - Sealed in one setup
 - Transportable
- Dialysis (less common)
 - Larger volumes
 - Difficult automated setup

Simplified phase diagram for crystallization

Precipitant Concentration

Soluble or membrane?

- There are different approaches to each type.
- At the Hauptman-Woodward High-throughput Screening Laboratory the same automated methodology is used for each but different sets of screening chemistries.
- Soluble proteins use a set of commercial and in-house designed screens.
- Membrane proteins prove the region around the critical micelle concentration (Koszleak-Rosenblum et al., Protein Science 18, 1828-1839, 2003).
- This talk just describes the soluble protein case

<u>Efficient</u> High-Throughput Crystallization is hard

- Successful high-throughput crystallization approaches require efficiency
 - The methodology must be equal or better to any other methods
 - The amount of sample used should be minimal
 - The amount of information obtained needs to be maximal and interpretable.
 - The results must be useable, reproducible and if necessary scalable.
 - Single point failures must be eliminated or minimized

Minimize sample volume

- Each experiment uses 200 nl of protein.
- The concentration is typically a few mg/ml depending on solubility.
- Each experiment uses 200 nl of cocktail.
- 1,536 different conditions are set up.
- Total volume needed is ~400 μl
- The volume needed is larger than other methods due to the large number of screens used but the information content is high.

<u>Efficient</u> High-Throughput Crystallization is hard

- Successful high-throughput crystallization approaches require efficiency
 - The methodology must be equal or better to any other methods
 - The amount of sample used should be minimal
 - The amount of information obtained needs to be maximal and interpretable.
 - The results must be useable, reproducible and if necessary scalable.
 - Single point failures must be eliminated or minimized

The HWI crystallization cocktail screen.

The 1536 diverse chemical cocktails (Luft et al., 2003). The 984 in-house conditions comprise a incomplete factorial sampling of 36 salts, eight buffers, and 5 different PEGs.

The remainder of 1536 cocktails are comprised of commercial screens available from Hampton Research. Specifically, in order of use; the Natrix Screen, Quick Screen, Nucleic Acid Screen, Sodium Malonate Grid, PEG/Ion, PEG 6000 Grid, Ammonium Sulfate Grid, Sodium Chloride Grid, HT Screen, Index and the SaltRx screen. The original Hampton Research 1+2 sample a set of conditions known to produce crystals in the past with the predominant variable being pH. Although described as a sparse matrix the number of samples is small and the distribution in chemical space wide therefore it is difficult to relate results from one condition to results from other conditions. This is the primary reason that crystallization today is target focused.

The Commercial Screens in the HWI crystallization cocktails

The commercial screens incorporate several distinct mechanisms of sampling the crystallization space. Examples are shown here.

C12 D12

H3

H4 H5

H6

HZ

H8

C11

D2 D3

D5

G4

G5

G6

G7

G8

G9

G10

G11

The SaltRx screen samples 22 crystallization salts with vervice concentration and pH. It A num sparse matrix where res related in terms of chen

> C4 D9

D10

F8

F9

F10

F11

F12

G1

Sodium Chloride

6

A3

B3

СЗ

D3

pН

7

Α4

B4

C4

D4

8

A5

B5

C5

D5

9

A6

B6

C6

D6

A2 A3 C6

C7

C8 C9

D6

D7

D8

E1

F2

E3

E4

E5

E6

E8

4

A1

B1

C1

D1

Conc (M)

1

2

3

4

E9

E10

E11

E12

F1

5

A2

B2

C2

D2

E3

E6

A number of Grid screens are incorporated, in this case Sodium Chloride. These provide a fine sampling of a small subset of individual conditions and serve to indicate the sensitivity (or lack of it) to small changes in precipitant conditions.

	Formate	0.4M	B11	B12	C1	1			
	dihydrate	0.7M		C2					
	Sulfate	1.0M	G1	G2	G3	1			
L	hydrate	1.8M	G4	G5	G6				
L			Lithium						
	Sulfate	0.8M	F7	F8	F9				
	monohydr	1.0M		F11					
l	ate	1.5M	F10		F12				
ļ	Potassium								
	Sodium	0.6M		H1	H3				
ļ	tartrate	1.2M		H2	H4				
	Thiocynat	0.5M	H5	H6	H7				
	е								
ŀ									
		0	L-Malic aci	d					
ł		1.2M		C9		1			
ł		2.2M		C10		1			
		S	uccinic aci	d	_	1			
ł		0.5M		E11		1			
ŀ		1.0M	- · ·	E12		1			
		050/	Tacsimate			1			
V		35%		H11		I			
		60%		H12		1			
ł				-11		1			
ł			F	pH 6.0		1			
ł	Codem	1.014	о Г1	6.9 F0	0				
L	Soulum	1.010	El	E2	23				

A special case – The Hampton Research Index Screen

Hampton Research Index Screen																			
Note, the HT screen is not a convential screen as such. It is designed to sample a range of reagents and provide an indication of the																			
appropriate chemical area and variables that would be appropriate for crystallization and should be used in this manner.																			
рН	Ammonium Sulfate 2.0M	Sodium chloride 3.0M		Magnesium	formate dihydrate		Sodium	phosphate		Neutralized organic acids (ph 7.0)		High supersaturatic	n salt and low polymer		Low ionic strength	systems		Non-volatile	organics
pH 0.3M 0.5M pH						рΗ				рН			рН		рН		-		
3.5	A1	A7					5.6	B5		B9		5.5	C8		3.5	D4		55	D12
4.5	A2	A8					6.9	B6		B10		6.5	C6		4.5	D5		0.0	E2
5.5	A3	A9		B1			8.2	B7		B11		8.5	C7		5.5	D6			E1
6.5	A3	A10			B2					B12			C9			D7			E3
7.5	A5	A11		B3						C1		7	C10		6.5	D10		6.5	E6
8.5	A6	A12			B4					C2			C11			D11			E9
										C3			C12		7	D2			E10
		Classic	salt ve	ersus p	Н					C4					-	D3			E4
										C5					7.5	D8	7.5		E7
	Hits he	ere indi	cate th	at a va	riation of	fsalt									8.5 D9				E8
concentration and pH in a grid screen																		E11	
	has a	strong	potenti	al for c	rystalliz	ation												8.5	E5
			0.1	,									0050						E12
HEGS and Salts as a function of pH																			
	3.35K 10K 3.35K							ate	Hd	te	7.0	0	7.0	ate		Ð		qe	
	sulfa	loride	ulfate rate	aceté	Chlor rate	acete	d Irate:		sodiu 1ydra	nate	citra H 7.0	Hd	mate	Hd b	formé te	tate te	trate /drat	um ate	romi
Ha	Ę	ı ch	n su hyd	Шт) mr	Ĕ	ixec shyc	%	um : etral	nalo 7.0	c pt	acic	n for	acić	um 1 dra	acet	n ci dih	issi yan	m m
	inor	dium	hiun ono	ioni	iesii exal	ioni	M Drid€		assi te te	E	non Dasi	nic	diun	alic	iesi dih)	inc ; dihy	odiu asic	Pota	ssit
	Amn	Soc	n Lit	Amm	Magr hi	Amn	chlc		Pota tartra	Sodiu	Amr trił	Succi	Ŝ	DL-M	Magt	Z	Sc triba	t –	Pota
5.5	F6	F10	G2	G6	G10	F5		15				H5			H8				
6.5	F7	F11	G3	G7	G11			20	H2	H3	H4		H6	H7		H9	H10		
7.5	F8	F12	G4	G8	G12		F4	25											
8.5	F9	G1	G5	G9	H1			30										H11	H12

Coarse test for chemical conditions likely to produce crystallization

Imaging

The volume is designed such that the complete drop is within the depth of focus. Imaging takes place before the protein is setup (a control), immediately after and then at one week intervals for 6 weeks.

Draw • 🔖 | AutoShapes • 🔪 🔪 🖸 🖂 🗐 🖓 • 🛃 • 🛓 • 🗮 🛱 🚇 🗊 💂

Ready

NUM

_					Multiple Images				
💌 Micr	osoft Excel					1. 21 74			
Eile Eile	<u>E</u> dit <u>V</u> iew <u>I</u> nsei	rt F <u>o</u> rmat <u>T</u> ools <u>D</u> ata <u>W</u> indo	w <u>H</u> elp	Ado <u>b</u> e PE		1000			
	~	📽 🖄 • 🗄 🎟 🗏 🏢 «	8 8 -	Arial			4		
2) 💨 📕 💷 🐿	i 🔁 🖾 💿 🎦 i 🖾 🖉 i	1 (P	₩¢ Reply w			· Marine		
A	2 🔻	fx					- All		
😫 4w	k sherlock.xls								
	А	В	С	D					
			X0	00007					
1					- server - A				
					N SA				
				LS .	Carles al				a
				CA					
2	,		M						
3		pН		9	Well #41 (6_C0011) -Precipitate -Phase Separation				
4					2.5M Ammonium chloride 0.1M Na Acetate, pH: 5				
5			1.19		21	25	20%		
6		bromide	2.38		9 13		40%		
7			3.56	5		1			
8			1.25		197 24	01	20% 383		
9		chloride	2.5	193	41	45	40%		
Image of W Well #41 (6_	ell #41 (0011)				ge of Well #29		Mental Ment Mental Mental Ment	e of Well #33 433 (6_C0009)	
-Precipitate -Phase Separ 2.5M Ammon	ration ium chloride			-Pr -Ph 3.7	rcipitato rcipitato ase Separation 4M Ammonia michioride		-"CR\ 3.74M 0.1M	'STALS" I Ammonium chloride MOPS, pH: 7	
0.10 Na ALC		March .		13 0.1	M Na Citrate, pH: 4			Service -	
	1 aller				all	SA.			A. C.
	THE	0		ary		Ala III		111111	
				- <u>-</u>	A	XE			
					13	A OL			· *
	A	· p			No. o Mo	6 Mar			
	A				Co Barton	- W			
	A AND A								
	A CONTRACTOR		and in case		a subscription and the second se	and the second second		and the second	

http://xtuition.ccr.buffalo.edu/devel/chem-space.php

http://xtuition.ccr.buffalo.edu/devel/chem-space.php

UV imaging – is it protein?

A major advance in imaging technology can identify submicron crystals

Using SONICC and UV-TPEF we can observe and verify protein crystals < 1 micron in size.

~80% of proteins in PDB low-symmetry generate SHG

http://www.formulatrix.com/products/protein-crystallography-tools/sonicc/how.html

SONICC and UV-TPEF are well described elsewhere

Second-Order Nonlinear Optical Imaging of Chiral Crystals. David J. Kissick, Debbie Wanapun, and Garth J. Simpson. *Annu Rev Anal Chem*. 2011 ; 4: 419– 437.

Two-photon fluorescence imaging of impurity distributions in protein crystals. Caylor, C. L., Dobrianov, I., Kimmer, C., Thorne, R. E., Zipfel, W. & Webb, W. W. (1999). Phys. Rev. E, 59, R3831–R3834

We'll talk about their application

One protein in detail to lay out the experiment

Protein 1, part of the pyruvate dehydrogenase protein complex

Hampton Research PEGRx HT-F4, 4% (v/v) 2-Methyl-2,4 pentanediol, 0.1 M Citric Acid pH=3.5 20% (w/v) PEG 1500 produced the following:

Immediately after the protein is added to the cocktail
Initial use of SONICC and UV imaging

Protein 1, part of the pyruvate dehydrogenase protein complex

Hampton Research PEGRx HT-F4, 4% (v/v) 2-Methyl-2,4 pentanediol, 0.1 M Citric Acid pH=3.5 20% (w/v) PEG 1500 produced the following:

SONICC SHG image

UV-TPEF image

Protein 1, part of the pyruvate dehydrogenase protein complex

Hampton Research PEGRx HT-F4, 4% (v/v) 2-Methyl-2,4 pentanediol, 0.1 M Citric Acid pH=3.5 20% (w/v) PEG 1500

X14163- Full[P]- 10mg/ml

X14163- [P]/2- 5mg/ml

Visible at 4wk

Protein 1, part of the pyruvate dehydrogenase protein complex

Hampton Research PEGRx HT-F4, 4% (v/v) 2-Methyl-2,4 pentanediol, 0.1 M Citric Acid pH=3.5 20% (w/v) PEG 1500

SHG at 4wk

Protein 1, part of the pyruvate dehydrogenase protein complex

Hampton Research PEGRx HT-F4, 4% (v/v) 2-Methyl-2,4 pentanediol, 0.1 M Citric Acid pH=3.5 20% (w/v) PEG 1500

X14163- Full[P]- 10mg/ml

X14163- [P]/2- 5mg/ml

UV-TPEF at 4wk

UV-TPEF

Hampton Research Ionic Liquids 5%(w/v) 1-Butyl-3-methyimidazolium dicyanamide

Protein 2

X14164- Full[P]-10 mg/ml X14164- [P]/2- 5 mg/ml

SHG at 4wk

Hampton Research Ionic Liquids 5%(w/v) 1-Butyl-3-methyimidazolium dicyanamide

Protein 2

X14164- Full[P]-10 mg/ml

X14164- [P]/2- 5 mg/ml

UV-TPEF at 4wk

Protein 2 (crystals identified visually in other conditions)

Visual image where SHG/UV-TEV signal detected

Best optimized condition

a) Well #103 Cocktail #C0290 Sonicc #C7

color image

b)

C)

Anion Sulfate Tartrate Carbonate Citrate Acetate Malonate Fluoride Formate Chloride Bromide Iodide

UV-TPEF image

SHG image

14_C0290 - 0.1M Sodium Bromide NaBr - 0.1M CAPS pH: 10 - 12% (w/v) PEG 20000

Distribution of Hits by pH

pH Range	# of Hits	Out of	Hit Percentage
3 <= pH < 4	0	17	0%
4 <= pH < 5	4	164	2.44%
5 <= pH < 6	2	202	0.99%
6 <= pH < 7	3	322	0.93%
7 <= pH < 8	27	376	7.18%
8 <= pH < 9	20	231	8.66%
9 <= pH < 10	12	103	11.65%
10 <= pH < 11	5	74	6.76%

Distribution of Hits by Anion

Legend
C = Clear
S = Phase Separation
P = Precipitate
X = Crystals

	с	s	P	х	Total	Outcome Percentages	
	58	48	92	0	204	28% - 23% - 45%	l
	8	3	1	0	13	61% - 23% - 7%	
• []	19	5	2	0	26	73% - 19% - 7%	
	6	8	63	0	78	7% - 10% - 80%	
	40	22	195	0	279	14% - 7% - 69%	
	3	6	7	0	16	18% - 37% - 43%	
	0	0	3	0	3	100%	
	22	4	11	0	37	59% - 10% - 29%	
	32	50	148	0	239	13% - 20% - 61%	
	3	22	69	0	97	3% - 22% - 71%	
	1	2	0	0	3	33% - 66%	

(Order is based on a Hofmeister index that ranks the species from more to less kosmotropic.)

Fusco D, Barnum TJ, Bruno AE, Luft JR, Snell EH, et al. (2014) Statistical Analysis of Crystallization Database Links Protein Physico-Chemical Features with Crystallization Mechanisms. Plos One 9.

Generate automated report

<u>Efficient</u> High-Throughput Crystallization is hard

- Successful high-throughput crystallization approaches require efficiency
 - The methodology must be equal or better to any other methods
 - The amount of sample used should be minimal
 - The amount of information obtained needs to be maximal and interpretable.
 - The results must be useable, reproducible and if necessary scalable.
 - Single point failures must be eliminated or minimized

Information management

- Capture the data and make it available to the user rapidly – realtime secure ftp account.
- Provide an easy way to image the data (MacroscopeJ, a program for the analysis and classification of images).
- Backup the data, in multiple places.
- Provide full experimental details (and keep experimental samples of cocktails).
- Publish details of analysis and and keep an extensive website with practical details (getacrystal.org).

<u>Efficient</u> High-Throughput Crystallization is hard

- Successful high-throughput crystallization approaches require efficiency
 - The methodology must be equal or better to any other methods
 - The amount of sample used should be minimal
 - The amount of information obtained needs to be maximal and interpretable.
 - The results must be useable, reproducible and if necessary scalable.
 - Single point failures must be eliminated or minimized.

Identify single point failures

- Where possible duplicate instrumentation.
- Have multiple plates ready to receive protein.
- For expensive instrumentation, identify alternative pathways (which may be more time consuming).
- Have very clear experimental protocol and communication strategies.

<u>Efficient</u> High-Throughput Crystallization is hard

- Successful high-throughput crystallization approaches require efficiency
 - The methodology must be equal or better to any other methods
 - The amount of sample used should be minimal
 - The amount of information obtained needs to be maximal and interpretable.
 - The results must be useable, reproducible and if necessary scalable.
 - Single point failures must be eliminated or minimized

Going beyond efficient crystallization is harder

There is more information in crystallization screening results than where crystals occur

Molecular Fingerprints

Molecular fingerprints are representations of chemical structures designed to capture molecular activity.

We use atomic properties and a SMILES string to capture six components:

- 1. Atomic number
- 2. Number of directly-bonded neighbors
- 3. Number of attached hydrogens
- 4. The atomic charge
- 5. The atomic mass
- 6. If the atom is contained in a ring

These components are calculated for the whole molecule in an iterative manner starting from an arbitrary non-hydrogen.

Example: Sodium chloride, NaCl

Sodium [11,0,0,1,22.99,0] Chlorine [17,0,0,-1,35.45,0]

Starting from Na two, properties are associated with Na and encoded by: (3,855,292,234,1) and (3,737,048,253, 1)*

One property is associated with Cl and encoded by: (2,096,516,726,1)

This information is stored in single integer with bits 3,855,292,234, 3,737,048,253 and 2,096,516,726 set to on.

* Rodgers and Hahn, J. Chem. Inf. Model. 2010, 50, 742-754

Cocktail Fingerprints

Cocktail fingerprints combine the molecular fingerprints and account for the molarity of each in the crystallization cocktail.

For example, consider a very simple example: 0.1 M sodium chloride and 0.1 M ammonium sulfate

Molecular fingerprint: Sodium chloride [(3855292234, 1),(3737048253, 1),(2096516726, 1)] Ammonium chloride [(847680145, 1), (3855292234, 1),(2214760707, 1)]

Bit (3855292234, 1) is common in both so we set the bit count to 2 and multiply by the molar concentration

Cocktail fingerprint: [(3855292234, 0.2),(3737048253, 0.1),(2096516726, 0.1) (847680145, 1),(2214760707, 0.1)]

The bits are stored in a single 64 bit number with the bit counts stored in a sequential array

Comparing Cocktail Fingerprints

Take a real example of two crystallization screening cocktails as stored in our database

Cocktail	Component	conc	unit	SMILES	MW	Density (g/cm^3)
C1249	calcium chloride dihydrate	0.02	м	[Ca+2].[Cl-].[Cl-].0.0	147.0146	
pH 4.6	sodium acetate trihydrate	0.1	м	[Na+].[0-]C(=0)C.0.0.0	136.0796	
	mpd	30	% (v∕v)	CC (0) CC (C) (C) 0	118.1742	0.9254
C0160	sodium chloride	4.48	м	[Na+].[Cl-]	58.4428	
рН 7.5	hepes	0.1	м	[0-]S(=0)(=0)CCN1CC[NH+](CC1)CC0	238.3045	

First convert all concentrations to molarity

Cocktail C1249 contains 30% (v/v) MPD. This is converted to 2.349 M. PEGs are more problematic as they can be polydispersive in which case the average molecular weight is used.

The cocktail fingerprint is calculated using the molecular fingerprint for each component and its molar concentration

Where F_k is the cocktail fingerprint, *i* is the number of components, *f* the molecular fingerprint and *c* the concentration

An example of two cocktail fingerprints

```
C1249 = [(2245273601,2.35),(2214760707,0.02),(3537123720,4.70),(864942730,0.10),
(1614748561,2.35),(786100370,2.35),(864666390,0.34),(3537119515,2.35),
(3925650716,0.02),(2246728737,7.15),(864662311,4.70),(1582611257,2.35),
(3737048253,0.10),(3855292234,0.04),(864942795,0.10),(2245384272,2.35),
(3992738647,2.35),(1510323402,0.10),(248253150,2.35),(1542633699,2.35),
(3219326737,0.10),(2246699815,0.10),(2355142638,2.35),(2245277810,2.35),
(1542631284,2.35),(2096516726,0.10),(3545365497,0.10),(1510328189,0.10)]
C0160 = [(864942730,0.20),(951748626,0.10),(2143075994,0.10),(2227993885,0.10),
(2968968094,0.40),(192851103,0.10),(2092489639,0.10),(2604889258,0.10),
(2880892204,0.10),(1535166686,0.10),(4226502584,0.20),(825302073,0.10),
(3855292234,4.48),(1412710081,0.20),(2828037323,0.10),(2228063684,0.20),
(569967222,0.10),(2105180129,0.10),(2803848648,0.20),(4055698890,0.10),
(864942795,0.10),(2808066764,0.20),(2245384272,0.40),(4023654873,0.10),
(3336755162,0.10),(999334238,0.10),(1789200865,0.10),(864662311,0.10),
(3737048253,4.48),(2096516726,4.48),(2257970297,0.10),(1634606847,0.10)]
```

Each is encoded in a single hashed number.

The Bray-Curtis dissimilarity measure is used to compute the dissimilarity.

$$BC(F_{i}, F_{j}) = \sum_{k} |F_{ik} - F_{jk}| / \sum_{k} |F_{ik} + F_{jk}|$$

This pH is incorporated along with the ability to weight individual components and the Cocktail Dissimilarity coefficient calculated.

$$CD_{coeff} = \frac{1}{sum(w)} \left(\left(\frac{|E(pH_i) - E(pH_j)|}{14} \right) w_1 + BC(F_i, F_j) w_2 \right)$$

The Cocktail Similarity coefficient given by:

$$CS_{coeff} = 1 - CD_{coeff}$$

The Dissimilarity Measure Over the Whole Screen

Automatic Clustering of the Results

C20

Hierarchical clustering using a default max cophenetic distance cutoff of one standard deviation identified 28 clusters.

PEG based — conditions

Salts with different anions and cations C17 C15 C14 C13 C13 C12 C11 C10 C10 C8

A structural genomics target.

BfR192, is a 343 residue protein with a molecular weight of 39.77 kDa. For crystallization screening the protein was prepared at 7.4 mg/ml in a 5 mM DTT, 100 mM NaCl, 10 mM Tris-HCl, pH 7.5, 0.02% NaN₃ buffer.

Several potential crystallization conditions for BfR192 SelMet labeled protein were identified

The optimized conditions for crystallization combined 5μ l of the protein at 7.4 mg/ml concentration was mixed with the precipitant containing 320mM potassium acetate, 100 mM sodium acetate, pH 6.5 in 1:1 ratio. Crystals appeared in one week.

PDB ID 3DMA as deposited in the PDB

Overlaying Crystal Hits on the Cocktail Clustering

Conditions showing crystal hits are given for each cluster along with the total number of cocktails in that cluster.

A selection of cocktails that showed hits are listed on the outside of the dendogram. For clarity not all hits are shown

Cluster 20, PEG based, only 3 hits

Cluster	Total	Hits	% hits	Sodium %	Potassium %	Phosphate %				
All cocktails										
	1536	70	4.5	47	24	16				
All crystal										
	70	70	100	70	27	30				
Clusters with crystals										
C13	108	19	17.6	73	72	100				
C14	106	15	14.2	65	21	0				
C12	57	11	19.3	16	2	0				
C8	45	Clus	Cluster 13 proved interesting in that sodium is present in 73% of the conditions versus 47% for the 1536 condition screen overall, potassium is present in 72% of the conditions verses 24% overall and finally							
C11	42	in 7								
C17	28	con								
C20	965	of t								
C15	19	pho	sphate is p	resent in 1009	% of the condit	ions versus				
C23	8	16%	6 overall. Th	nis suggests a	strong influence	ce of these				
C4	12		8.3	83						
C10	12	1	8.3	75	25	0				

Zoom in on Cluster 13

Identifies a pipette error

Clustering samples the phase diagram

Comparing Chemistry to Outcome: The Development of a Chemical Distance Metric, Coupled with Clustering and Hierarchal Visualization Applied to Macromolecular Crystallography

Andrew E. Bruno¹, Amanda M. Ruby¹, Joseph R. Luft^{2,3}, Thomas D. Grant², Jayaraman Seetharaman⁴, Gaetano T. Montelione⁵, John F. Hunt⁴, Edward H. Snell^{2,3}*

1 Center for Computational Research, State University of New York (SUNY), Buffalo, New York, United States of America, **2** Hauptman-Woodward Medical Research Institute, Buffalo, New York, United States of America, **3** SUNY Buffalo Dept. of Structural Biology, Buffalo, New York, United States of America, **4** Department of Biological Sciences, The Northeast Structural Genomics Consortium, Columbia University, New York, New York, United States of America, **5** Northeast Structural Genomics Consortium, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine and Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America

Abstract

Many bioscience fields employ high-throughput methods to screen multiple biochemical conditions. The analysis of these becomes tedious without a degree of automation. Crystallization, a rate limiting step in biological X-ray crystallography, is one of these fields. Screening of multiple potential crystallization conditions (cocktails) is the most effective method of probing a proteins phase diagram and guiding crystallization but the interpretation of results can be time-consuming. To aid this empirical approach a cocktail distance coefficient was developed to quantitatively compare macromolecule crystallization conditions and outcome. These coefficients were evaluated against an existing similarity metric developed for crystallization, the C6 metric, using both virtual crystallization screens and by comparison of two related 1,536-cocktail highthroughput crystallization screens. Hierarchical clustering was employed to visualize one of these screens and the crystallization results from an exopolyphosphatase-related protein from *Bacteroides fragilis*, (BfR192) overlaid on this clustering. This demonstrated a strong correlation between certain chemically related clusters and crystal lead conditions. While this analysis was not used to guide the initial crystallization optimization, it led to the re-evaluation of unexplained peaks in the electron density map of the protein and to the insertion and correct placement of sodium, potassium and phosphate atoms in the structure. With these in place, the resulting structure of the putative active site demonstrated features consistent with active sites of other phosphatases which are involved in binding the phosphoryl moieties of nucleotide triphosphates. The new distance coefficient, CD_{coeff}, appears to be robust in this application, and coupled with hierarchical clustering and the overlay of crystallization outcome, reveals information of biological relevance. While tested with a single example the potential applications related to crystallography appear promising and the distance coefficient, clustering, and hierarchal visualization of results undoubtedly have applications in wider fields.

Citation: Bruno AE, Ruby AM, Luft JR, Grant TD, Seetharaman J, et al. (2014) Comparing Chemistry to Outcome: The Development of a Chemical Distance Metric, Coupled with Clustering and Hierarchal Visualization Applied to Macromolecular Crystallography. PLoS ONE 9(6): e100782. doi:10.1371/journal.pone.0100782

Editor: Israel Silman, Weizmann Institute of Science, Israel

Received April 2, 2014; Accepted May 28, 2014; Published June 27, 2014

Copyright: © 2014 Bruno et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. The code used to evaluate the CDcoeff is open source and freely available at http://ubccr.github.io/cockatoo/ or directly from the authors. The crystallization images and cocktail data are large files (1,536 different images and metafiles) and available from the authors.

Funding: The research is supported by DTRA, NIH R01GM088396, R01GM100494 and NSF 1231306. The protein samples used in this work were provided in part by the Protein Structure Initiative of the National Institutes of Health, NIGMS grant US4 GM094597 and R01GM100494. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: esnell@hwi.buffalo.edu

Incorporating the correct ligands reduced the R and R_{free} from to 23.5% and 26.4% to 20.7% and 24.3% respectively.

The software is publically available and while it takes some time to run for each generation of screen it only has to be run once.

A Revised Structure Illustrating Mechanism

Biological implication of the phosphates identified

- The structure consists of two domains (N-terminal domain; residues 2 -212 and C-terminal domain residues 217-343) which are connected by a short loop seen in the initial structure
- The N-terminal domain contains the DHH (Asp224-His225-His226) motif and the C-terminal domain contains a glycine-rich (GGGH-Gly308-Gly309-Gly310-His311) phosphate binding motif – seen but not identified in the initial structure.
- Three of the phosphates (presumably carried with the protein), and the potassium and the sodium ion are bound in the cloft between the two domains
- The phosphate ions interact wi
- The location of the phosphate might anchor in this pocket.
- The putative active site has fea which are involved in binding t
- The possible roles of the active and polarization of the phosph nucleophilic attack.
- The space around the phospha

The important point here is not the details of the new information but that this information was obtained after the correct ligands were identified. Potential function and mechanism was revealed. While on could argue that these could have been identified earlier many examples in the PDB have ambiguous atoms – we have explored only a small sample of structures and seen problems in many of them.

es

on

Going from crystals to diffraction properties

Does it diffract? Screening before the synchrotron

Crystal plates shipped by FedEx (Diamond and NSLS) and suitcase (Diamond)

Crystals remained in place and diffracted.

Not talked about.

Automated image analysis – been worked on for many years, often talked about, commercially very lucrative.

Tools for in-situ analysis – identifying crystals to X-ray characterize.

Analysis of multiple conditions to generally characterize the protein rather that where it crystallizes.

Other techniques to probe crystallization conditions.

Got a protein?

Get a crystal[™]

500 μ l protein at a ~10 mg/ml, setup against almost every Hampton screen and an incomplete factorial sampling of chemical space, visual images weekly over 6 weeks, SONICC and UV verification, remote data access. Automated optimization also available.

Details at: **GetACrystal.org**

Acknowledgements

Support and Funding: NIH, DoD and NSF

Thank you and questions?

esnell@hwi.buffalo.edu