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Pessimists, Optimists, and Crystallographers

Consider a glass of water

Air Pessimist
(the glass is half empty)
v Crystallographer
4 (the glass is completely full)
Optimist
Water

(the glass is half full)
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Only
approximately
11% of the
proteins we
target for
crystallography
yield a
crystallographic
structure.
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Mcta Crystallographica Section F
Structural Biology
and Crystallization
Communications

IS5M 1744-3091

Janet Newman,** Evan E.

Bol ton,b Jochen Miiller-
Dieckmann,” Vincent ). Fazio,®
Travis Gallaghcr,d David Lovell,®
Joseph R. Luit,*® Thomas S.
Peat,” David Ratcliffe,® Roger A.
S.wlc,h Edward H. Snell,"® Kerry
Taylor,® Pascal Vallotton,!
Sameer Velanker' and Frank von
Delit*

“Materials Science and Enginesring, C51RO), 343
Royal Parade, Parkville, VIC 3052, Australia,
BNCBLL MLM, NIH, Department of Health and
Human Services, BA00 Rockville Pike, Bethesda,
MDD 20894, USA, "EMBL Hamburg Outstation
/o DESY, Matkestrasse 85, D-22603 Hamburg,

Marmam: 9Matianal Inctitute dar Sandaede and

Acta Cryst. (2012). Fo8

On the need for an international effort to capture,

share and use crystallization screening data

When crystallization screening is conducted many outcomes are observed but
typically the only trial recorded in the literature is the condition that yielded the
crystal(s) used for subsequent diffraction studies. The initial hit that was
optimized and the results of all the other trials are lost. These missing results
contain information that would be useful for an improved general unde rstanding
of crystallization. This paper provides a report of a crystallization data exchange
(XDX) workshop organized by several international large-scale crystallization
screening laboratories to discuss how this information may be captured and
utilized. A group that administers a significant fraction of the world’s
crystallization screening results was convened, together with chemical and
structural data informaticians and computational scientists who specialize in
creating and analysing large disparate data sets. The development of a
crystallization ontology for the crystallization community was proposed. This
paper (by the attendees of the workshop) provides the thoughts and rationale
leading to this conclusion. This is brought to the attention of the wider audience
of crystallographers so that they are aware of these early efforts and can
contribute to the process going forward.

At least 99.8% of crystallization experiments produce an outcome other

than crystallization.
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No crystal ...
No crystallography ....

No crystallographer ....

(Change careers to cryo electron microscopy
— a complentary technique)
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Crystallization theory is well established

The fundamental theory around the protein phase diagram is well understood.
The most efficient method to probe it is chemically screening different conditions

Supersaturation
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(Dumetz et al., 2009)



The Crystallization Screening Center at the Hauptman-
Woodward Medical Research Institute

Since February of 2000 the High Throughput Crystallization Center has been
screening potential crystallization conditions as a high-throughput service

The HTS lab screens samples against three types of cocktails:

1. Buffered salt solutions varying pH, anion and cation and salt concentrations

2. Buffered PEG and salt, varying pH, PEG molecular weight and concentration
and anion and cation type

3. Almost the entire Hampton Research Screening catalog.

The HTSIlab has investigated the crystallization properties of over 19,000
individual proteins archiving approximately 180 million images of

crystallization experiments.

All data and in many cases, dead volume recovered samples are available



Macromolecule Concentration

Simplified phase diagram for crystallization
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¥ Success rate for soluble protein to
'n},‘\ structure is ~20%. But, based on

== the number of conditions

-~ screened, 99.8% of everything

you try is failure.




1,536 wells each imaged
at 9 timepoints

........

N

532 nm
oy . 1064 nm (SHG)
7x visible images SHG images Chiral crystal
532}‘ O NNAN—>
Fluorescence
Concentrated 325-400 nm )
protein 13,824 images generated for

UV-TPEF and SHG images at 4 weeks each experimental screen
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Sample ID#

Good at finding
crystals

Based on data from
NESG from 144 out of
328 targets with one or
more verified hits
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Many outcomes




Can we automate the classification
of outcomes?

Training set:

e  Set 1: ~150,000 images (96
proteins) classified by eight people
in a set of categories (crystal, clear,
precipitate, skin, phase separation,
other, and combinations) witha
minimum of three people looking at
each image.

« Set 2: 7420,000/images (269
proteins) classified as crystaliorne
crystal by eight people, arsingle
person looking at eachiimage:

29040 29397

469 431

4]
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als

Precipitate
itate
kin

Phase and precip
Phase and ski
Precipitate and
Phase and crystal
Precipitate and cryst.
Skin and cry:




Testing the humans with the training set.

* Extra layer of experiment added
without human classifier
knowledge.

The same set of images was
included at the start, half way
through, and at the end of the
study.

All human classifiers were given
this data.

Agreement between same
classifier and same image was at
maximum 80% and often a lot less.

Humans cannot agree even with
themselves.

Training sets were trimmed so that
training images had an agreement
with at least two classifiers for
training set 1.

90 ¢

Scores exactly in common
L [=) =} ~] | [=.2] [#.a]
A = LA [=1 Lh = L

Initial Middle

12345678 12345678

Scores exactly in common

95

90

85+

80

75

70

65 -+

Scorer

123456738

O Initial and middle
@ Middle and final

Scorer




Using the training set for classification of other
Images

* Worldwide community grid with random tree classifier used, a minimum of
five year run time to process all available images.

* Very good results within the training and test set, but less so outside of that.
Results were not useable.

* Training set also provided to other groups, several still working on
automated analysis. Test set kept for validation.

e Several recoding efforts succeeded in taking the five year run time down to
one month.

» Strategy was a comprehensive feature extractor followed by supervised
learning. Classifier was unique to our images.

Results in a word, unsuccessful.
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Big data in X-ray crystallization is old data ...

jCOVa U > u A
[ xtuition x ‘
——
& > C O Notsecf /' [ xtuition X
< C' | ® Notsecure | xtuition.org/well/13057classified=true8crystals=true&class=crystal * ® @
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Q Search &8 Screens A Compounds 22 Samples & API ? About

(Xtuition

Samples /| X000009233 ' Wells
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Read Date: 2007-10-12 15:23:00 Read Date: 2007-10-12 15:23:00 Read Date: 2007-10-12 15:23:00
@ Sc Cocktail: 7_C1536 Cocktail: 7_C0569 Cocktail: 7_C0574
Browse HW | ® crystal & Crystal |
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Develope
Work sup

Old data portet

functional |ty S X0000092331504 X0000092331509 X0000092331533




Switch gears and look at the chemistry
instead of pictures

Molecular Fingerprints This information is
stored in single

Molecular fingerprints are integer with bits set

representations of chemical structures depending on the

designed to capture molecular activity. properties. -

We use atomic properties and a SMILES Rodgers and Hahn, J. Chem. Inf. Model. 2010,
50, 742-754

string to capture six components:

Atomic number

Number of directly-bonded neighbors
Number of attached hydrogens

The atomic charge

The atomic mass

If the atom is contained in a ring

ok wWwNPRE

Cocktail fingerprints combine the
molecular fingerprints and account for
the molarity of each in the crystallization
cocktail.

These components are calculated for the
whole molecule in an iterative manner
starting from an arbitrary non-hydrogen.



The Dissimilarity Measure Over the Whole Screen

Adapted from Newman J, Fazio VJ, Lawson B, Peat TS (2010) Crystal Growth & Design 10: 2785-2792

1.0
Aspects of the screen design - fis
are clearly seen pule e e
Hampton Research PEG/lon screen 1200 e - 0.8
Hampton Research Silver Bullets T @ l0.7
1000 g
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i
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The scale is normalized to the most

dissimilar chemical conditions Cocktail ID number



Automatic Clustering of the Results

Hierarchical |
Clustering using a simliarity score |'|| LF r 1 J[
default max cophenetic 0.0 05 10 § l[!rﬂ"d’ il

distance cutoff of one
standard deviation
identified 28 clusters.

PEG based — C20
conditions

Cl5

Sz.alts with 1
different c13
anions and 12
cations Cl1




PDB ID 3DMA as deposited in the PDB



New information representations

3/19

Cl4 C15

15/106

C13
19/108

1A
11/57

Conditions showing
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number of cocktails

along with the total
in that cluster.

crystal hits are given
for each cluster
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Cluster 20, PEG based, only 3 hits



All cocktails

4.5

All crystal

~
o

100 70 27 30
Clusters with crystals

(IR
(0]
=
IS
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(o))
(9]
N
=
o

Cluster 13 proved interesting in that sodium is present
in 73% of the conditions versus 47% for the 1536
condition screen overall, potassium is present in 72%
of the conditions verses 24% overall and finally
phosphate is present in 100% of the conditions versus
16% overall. This suggests a strong influence of these
components in crystallization in this cluster.
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A Revised Structure lllustrating Mechanism

The putative active site has
features that are consistent
with active sites of other
phosphatases which are
involved in binding the
phosphoryl moieties of
nucleotide triphosphates

PDB 4PY9 Reduced the R and R;,.. from 22.3% and 25.9% to 20.7% and 24.3%



Potential to understand phase diagram in terms
of X-ray diffraction properties

A B P
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Using historic data to identify patterns.

OPEN G ACCESS Freely available online @ PLOS | ONE

Statistical Analysis of Crystallization Database Links
Protein Physico-Chemical Features with Crystallization
Mechanisms

Diana Fusco'?, Timothy J. Barnum®®, Andrew E. Bruno®, Joseph R. Luft®, Edward H. Snell*®,
Sayan Mukherjee’, Patrick Charbonneau®®*

1 Program in Computational Biclogy and Bioinformatics, Duke University, Durham, North Caroling, United States of America, 2 Department of Chemistry, Duke University,
Durham, Morth Carolina, United States of America, 3 Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of
America, 4Center for Computational Research, State University of New York, Buffalo, New York, United States of America, 5Hauptman-Woodward Medical Research
Institute, Buffalo, New York, United States of America, 6 Department of Structural Biclogy, State University of New York, Buffalo, New York, United States of America,
7 Department of Statistical Science, Department of Computer Science and Department of Mathematics, Duke University, Durham, Narth Cardlina, United States of
America, 8 Department of Physics, Duke University, Durham, North Carolina, United States of Amerca

Abstract

X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules.
Despite the success of the technigue, obtaining well diffracting crystals still critically limits going from protein to structure.
In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical
understanding remains elusive because of the large number of variables involved, hence little guidance is available to
systematically identify solution conditions that promote crystallization. To help determine relationships between
macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182
proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the
reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is
characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies
specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct
mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization,
the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability
of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide
macromolecular crystallization toward a more rational basis.

CrossMark
phetutaivn

Three classes of protein

in data set:

* Crystallizable by PEG

* Crystallizable by salt

* Crystallizable by very
high salt concentration

The last class corresponded

to salt crystals!

Simple patterns can be found from a sub-set of historical data. In this case samples
likely to be crystallized via charge (salts) versus crowding (e.g. PEGs) could be

identified.



Complementary analysis (after the fact)

* Small Angle X-ray Scattering

* Possible in a high-throughput manner but not as Anglescattermg
‘Theory and Practice

high-throughput as crystallization screening.

* Characterizes sample in term of globularity,
flexibility, and dynamics.

* Provides oligomer information.

Particle induced emission of X-rays

* Collaboration with Elspeth Garman and Geoff
Grimes in the UK who developed high-throughput
processes. I

e Atomic technique — can use ‘dead’ protein. Shameless plug

* Quantitative technique to accurately identify and
measure heavy atoms.



Log,, Counts per channel

Particle induced X-ray emission

The energy of an X-ray emitted when an atomic electron undergoes an energy
transition between its shell and a vacant electron site in a lower energy shell (e.g. for
an M to L shell transition, sulphur gives a 2.3 keV X-ray) gives an unambiguous
identification of atoms.

A4 E
A3 3 Se
o KV

A E

AQ A

6 8 10 12 14
X-ray energy (keV)

Emission of the characteristic X-rays from a sample can be induced by an incident
beam of high energy protons (Particle Induced X-ray Emission: PIXE).

Collaboration with Elspeth Garman and Geoffrey Grime



The experiment

34 metalloprotein samples chosen from a set of samples successfully
crystallized in the High-Throughput Crystallization Screening Center.
All were SeMet samples.

All produced crystals and a had structural model deposited in the PDB.
PIXE analysis was carried out on each sample.

The samples used were split into four groups based on PIXE analysis
* Those where the PDB was inconsistent with the PIXE data
 Those where extra metals were seen in the PIXE data (but not present
in the PDB)
* Those that were consistent with the PIXE data.
* Those that produced no signal.



. Potential
Metal Metals in metals in
PDB ID Gene Residues i PDB PIXE PIXE (1- Crystallization conditions
(>3xLOD) 3xLOD)
PDB inconsistent with PIXE
1 BiR14 456 Ca - Ca, Mn 18% PEG 3350, 0.2M Ca acetate, 0.1M MES, pH 6.15
2 NsR4371 106 Mn - - 20% PEG 4000, 0.1M Mn chloride, 0.1M MES, pH 6.0
SnR135
3 n D 161 Ca - Ca 20% PEG 8000, 0.1M Ca acetate, 0.1M MES, pH 6.0
Ca (3.3), Mn
. (0.5), Fe 15% PEG 8000, 0.17 M sodium acetate, 0.01 M L-
4 283 Fe/Zn Zn
Protein A / (1.2), Co cysteine, 0.1 M MES pH 6.2
(1.2)
5 NsR236 119 K - Ca 8.64 M K acetate, 0.1 M TAPS, pH 9.0
NsR437 .
6 H 141 Mn - Fe, Co 20% PEG 1000, 0.1M Mn chloride, 0.1M MES, pH 6.0
Co (0.7), Z .
7 SoR237 137 Na © ((0 7)) : Fe, Ni NaCl 200 mM, MES PH6, PEG 3350 20%, pH 6.15
Ca, Mn, . .
8 BtR324A 169 Zn - Fe* 0.75M Mg Formate, 0.1M Bis-Tris, pH 7.0
[0)
9 GR157 262 7n ) o 100 mM Na Acetate (le\lll:C)l, 30% MPD, and 200 mM

Model in the PDB containing a metal from the crystallization cocktail and not protein

Model in the PDB containing an incorrect metal




. Potential
Metal Metals in metals in
PDB ID Gene Residues i PDB PIXE PIXE (1- Crystallization conditions
(>3xLOD) 3xLOD)
PDB inconsistent with PIXE
1 BiR14 456 (Ca) - Ca, Mn 18% PEG 3350, 0.2\ Ca Jcetate, 0.1M MES, pH 6.15
2 NsR437I 106 (Mn } - - 20% PEG 4000, 0.1M MnXkhloride, 0.1M MES, pH 6.0
SnR135
3 n b 161 - Ca 20% PEG 8000, 0.1etate, 0.1M MES, pH 6.0
Ca (3.3), Mn
. (0.5), Fe 15% PEG 8000, 0.17 M sodium acetate, 0.01 M L-
4 283 Fe/Zn Zn
Protein A / (1.2), Co cysteine, 0.1 M MES pH 6.2
(1.2)
5 NsR236 119 (K) - Ca 8.64 @etate, 0.1 M TAPS, pH 9.0
- N
NsR437
6 > H 141 @ - Fe, Co 20% PEG 1000, 0.1M@hloride, 0.1M MES, pH 6.0
—~ | 0 (0.7),z
7 SoR237 137 @ © ((0 7))' : Fe, Ni I 200 mM, MES PH6, PEG 3350 20%, pH 6.15
Ca, Mn, . .
8 BtR324A 169 Zn - Fe* 0.75M Mg Formate, 0.1M Bis-Tris, pH 7.0
1 M Na A H4. % MPD 2 M
9 GR157 262 7n ) o 00 m a Acetate (p Na6C)|, 30% , and 200 m

Model in the PDB containing a metal from the crystallization cocktail and not protein

Model in the PDB containing an incorrect metal




) Potential
Metal Metals in metals in
PDBID | Gene Residues i PDB PIXE PIXE (1 Crystallization conditions
>3xLOD
(>3xL0D) | 5. 0p)
Extra metals present in PIXE
Fe (0.6), Co N
0.1 M Na,Mo0,*2H20, 0.1 M Bis-Ti , 12%

1 MUuR16 210 Fe/zn | (0.9), Ni ; 32VI0%s e 20000'5 ris propane, 227

(0.4), Zn (0.7)
2 MqgR88 420 Na*® Ca(7.1) Fe 0.1 M Na,MoO,, 0.1 M Tris, pH 8.0, 20% PEG 8000

Ca (0.7), Fe 0.1 M KH,PO,, 0.1 M NaC,H,0,, pH 5.0, 12% PEG
3 SR677 222 Mg* ! K/Br 2w 2 37 ’

g (0.05) / 20000

4 DrR130 296 Mg* Ca* - 0.1 M NaCl, 0.1 M TAPS, pH 9.0, 18% PEG 3350, MgCl,
5 i | BtR319D 172 Mg* Ca (1.74) - None given

Mn (0.8), Fe 0.1 M Na citrate, pH 5.2, 1.25 M Li,SO,, 0.5 M
6 ShR87 320 Mg* -

(0.7) (NH,),50,
o | Ca (0.5), Fe ) . .

7 SmR83 218 Mg (0.1) Ti, Co, Cu 0.1 M LiCl,, 0.1 M Bis-Tris, pH 5.5, 18% PEG 3350

Mn (0.2), Fe o .
8 NsR141 225 Mg*® (0.4), Ni (0.4) Co 0.1 M citric acid, pH 5.0, 1.6 M (NH,),SO,
9 ZR319 289 Mg’ - Ca, Fe, Cu | 0.1 M Tris-HCl, pH 9.1, 18% PEG 3350, 0.1 M MgSO,

Model in the PDB containing an extra misidentified metal




« Of the 34 samples analyzed, 9 were inconsistent with the PDB
results, 9 had extra metals present, 18 were consistent, and 2
were unsuitable for analysis due to low protein concentration on
the sample.

* Intotal, 18 of the 32 analyzable samples (56%) were not correctly
or fully described in the PDB deposition.
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Wavelength

Se
Zn
Co
Fe
Mn
Ca
0

fl

60

Ul
o

B
o

N
o

Integrated peak height (electrons)
= w
o o

21 Se atoms, 7 in each chain A,Band C

-8.6571
-0.3843
0.1697
0.2421
0.2905
0.2938
0.0163

0.97931

3.843
2.477
1.715
1.500
1.303
0.565
0.012

10

f'n_Se

1.000
0.645
0.446
0.390
0.339
0.147
0.003

20

Peak number

f'nZn f'n Co f'n_Fe
1.000
0.692 1.000
0.606 0.875 1.000
0.526 0.760 0.869
0.228 0.329 0.376
0.005 0.007 0.008

®%egs0eee
30 40 50

22

27

32

37



Wavelength 0.97931

f' ! f''n_Se f'n_Zn f'n_Co f'n_Fe
Se -8.6571 3.843 1.000
Zn -0.3843 2.477 0.645 1.000
Co 0.1697 1.715 0.446 0.692 1.000
Fe 0.2421 1.500 0.390 0.606 0.875 1.000
Mn 0.2905 1.303 0.339 0.526 0.760 0.869
Ca 0.2938 0.565 0.147 0.228 0.329 0.376
0] 0.0163 0.012 0.003 0.005 0.007 0.008
Chain A 9.59 1.00
6.83 0.71
6.81 0.71
Chain B 8.42 1.00
7.60 0.90
7.50 0.89
Chain C 9.11 1.00
7.70 0.85

6.28 0.69



PO, Fe Metals in new structure, Fe, Mn,

Co cluster
Rwork Rfree RMS(bonds) | RMS(angles) Clash Ram-fav Ram-out Rot-out
PDB
0.193 0.212 0.008 1.2 11.97 96.07 0.61
Re-refined
0.1847 | 0.2143 0.0031 0.744 1.9 96.81 0.61 2.82
Metal Metals replaced with Co, Fe and Mn, PO, added in active site. Ca added in places
15.60 18.50
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Revisiting image analysis

3 Machine Automated Recognition of
I I A RC Crystallization Outcome

A collaboration with Duke University, GalaxoSmithKline Inc, Googe Brain, the
University of Buffalo, CSIRO, University of York, Bristol-Myers Squibb, Merck,
Abbvie and others (growing effort).
Current training set of 493,214 human classified images limited to crystal,
clear, precipitate, and other.
Random set of 50,284 used for testing.
Multiple image types
» Different growth geometries — microbatch under oil and vapor diffusion
* In house designed imagers, Rigaku, and Formulatrix systems
* A human can interpret images from any imager, why can’t an automatic
procedure.



Some details

Images classified by separate groups in multiple categories.
* Reclassified to four categories, crystal, precipitate, clear or other

* Classifier is a deep Convolutional Neural Network with an Inception-v3
architecture.

* Images are reduced to 599x599 pixel images which are further compressed to
299x299 pixels.

e Training data taken from images with random 599x599 patches treated to
randomize brightness, saturation, hue, and contrast with random flipping left or
right.

* Model was implemented in TensorFlow running across 50 Nvidia K80 GPUs.
* Training took 19 hours on 100 million images.

* Analysis for a new image is almost real time.



True Predictions

label
Crystals Precipitate Clear

Crystals 91.0% 5.8% 1.7%
Precipitate 0.8% 96.1% 2.3%
Clear 0.2% 1.8% 97.9%
Other 4.8% 19.7% 5.9%

Remember, humans at best have a 80% success rate.

Other

1.5%

0.7%

0.2%

69.6%



Sample X09664 - Reading 2/19/2008 — Week 2

Cocktail 1510, 0.93 probability of a
crystal.

Cocktail 349, 0.93 probability of a crystal.

Cocktail 1492, 0.93 probability of a
crystal (presence not clear by eye,
questionzole identification).

Crystals clearly identified (shown enlarged)



Sample X09664 - Reading 2/19/2008 — Week 2

Cocktail 1213 Yes Cocktail 1009 Yes Cocktail 907 Possible

0.92 probability of crystals @ 0.92 probability of crystals 0.90 probability. of crystals

Cocktail 147 Cocktail 715 Yes Cocktail 479

0.92 probability of crystals 0.92 probability of crystals 0.91 probabilit?%’f-crystals




Sample X09664 - Reading 2/12/2008 — Week 1

Crystals clearly identified (shown enlarged)

Cocktail 1314, 0.93 probability of a
crystal.

Cocktail 1255, 0.92 probability of a
crystal (larger features in drop but also
small crystals).

Cocktail 1332, 0.92 probability of
a crystal.



Sample X09664 - Reading 2/12/2008 — Week 1

Cocktail 1416 Possible* | Cocktail 988 Cocktail 314 Yes

0.91 probability of*Crystals 0.91 probability of crystals 0.90 probability of crystals

Cocktail 478 Cocktail 977 Possible Cocktail 1267

0.91 probability of crystals 0.91 probability of crystals 0.90 probability of crystals

For 1416 — Autoscoring has possibly detected small air bubbles but small crystals are also present




Big data needed

e Our data, 19,000 proteins, visual images at day 1 and
weeks 1 through 6 (7 images total). UV two photon
fluorescence and SONICC for many samples. Over 200
million data points — both success and failure.

* Biological Macromolecule Crystallization Database —
crystallization conditions for ~100,000 proteins in PDB.

No data on failure.
* Other large scale crystallization centers.
* The pharmaceutical industry.
* A robust image classification capability.



What if the visible images are ambiguous?

Do any of the




Can we learn anything?

e Our experience with the manual analysis of images
indicate that there is information available that is
pertinent to structure.

* We don’t know how much or if predictive patterns
may exist.

* If they do, they may be complex.

* Do we have enough information to find signals in
the noise?

* How can we get more?

Our goal is to link data representation tools with automatic image classification to
obtain new information



Conclusion

Some truth may be out there



Thank you and questions?

.-,.
45
|maa
o s =15 - PO

v
A - o
TR b 11 (s (o

@ n.lmw l.ﬁlll“‘x l*l‘lnll

t

esnell@hwi.buffalo.edu




