BioSAXS data processing and interpretation

Edward H. Snell

Hauptman Woodward Medical Research Institute, Buffalo, NY 14203, USA.

BioSAXS data processing and interpretation

the

practical

sessions

And how you can use it with other techniques

Edward H. Snell

Hauptman Woodward Medical Research Institute, Buffalo, NY 14203, USA.

SAXS is a simple experiment

1.5 mg/ml

3.1 mg/ml

4.6 mg/ml

6.1 mg/ml

SAXS is a simple experiment but a powerful one

y

Envelope reconstruction using the crystallographic structure

C terminal domain

The crystal structure (which shows only the C-domain)

Eukaryotic Gln tRNA synthetase

Crystallized the C-terminal in the standard screen, conditions chosen that were already known to be good cryo-conditions.

A combination of crystallography, SAXS, homology modeling and computational modeling was used to give the complete structure and tested by biochemical analysis.

N-terminal domain SAXS and crystallographic structure

HingeProt software predicts hinge

Appears to fill space between domains

Sequence analysis shows conserved motifs for these two areas

SAXS analysis depends on shape of the curve, not intensity.

Information comes from shape and not intensity

BioSAXS 60 minutes BioSAXS 50 minutes BioSAXS 40 minutes BioSAXS 30 minutes BioSAXS 20 minutes BioSAXS 10 minutes

Laboratory

Laboratory data scaled to synchrotron

How do we interpret SAXS data?

Data

From: Small-angle scattering studies of biological macromolecules in solution, Svergun and Koch, Rep. Prog. Phys., 1735-1782 (2003)

Pair distribution function

Fourier transform of data.

From: Small-angle scattering studies of biological macromolecules in solution, Svergun and Koch, Rep. Prog. Phys., 1735-1782 (2003)

What does solution scattering give you?

Long, slow decay with d.

Extended to three dimensions

Pair distribution function

From: Small-angle scattering studies of biological macromolecules in solution, Svergun and Koch, Rep. Prog. Phys., 1735-1782 (2003)

SAXS is underdetermined

And then the problems ...

Tail to front

Can we use X-ray solution scattering?

It's possible to fit multiple envelopes to the data.

You will always get an envelope despite the data!

SAXS is complementary to crystallography

Ab intio envelopes

1). alr0221 protein from Nostoc (18.6 kDa)

protein LegL7 (39 kDa)

2). C-terminal domain of a chitobiase (17.9 kDa)

4). E. Coli. Cystine desulfurase activator complex (170 kDa)

Overlaid with subsequent X-ray structures

1). alr0221 protein from Nostoc (18.6 kDa)

2). C-terminal domain of a chitobiase (17.9 kDa)

4). *E. Coli.* Cystine desulfurase activator complex (170 kDa)

And data on what was missing ...

1). alr0221 protein from Nostoc (18.6 kDa)

2). C-terminal domain of a chitobiase (17.9 kDa)

SAXS is a simple experiment but a powerful one

It is easily interpreted but it has limitations

It is sensitive to all conformations of the molecule in solution and to residues missing in the crystal structure

#	Name	NESG ID	PDB	Ref	State	Conc	MW	Res		
					-					
	Samples where crystallo	graphic structures	s were available	е	-					
1	Domain of Unknown Function	DhR2A	3HZ7	16	М	6.9	9523	87		
2	Diguanylate cyclase with PAS/PAC sensor	MqR66C	3H9W	17	D	8.2	13611	210		
3	Nmul_A1745 protein from Nitrosospira multiformis	NmR72	3LMF	18	Т	6.9	14069	484		
4	Domain of Unknown Functiion	DhR85C	3MJQ	19	D	10.7	14609	252		
5	Sensory box/GGDEF family protein	SoR288B	3MFX	20	D	9.1	14779	258		
6	MucBP domain of the adhesion protein PEPE_0118	PtR41A	3LYY	21	М	9.5	14300	131		
7	Sensory box/GGDEF domain protein	CsR222B	3LYX	22	D	12.7	15341	248		
8	HIT family hydrolase	VfR176	3124	23	D	11.0	17089	298		
9	EAL/GGDEF domain protein	McR174C	3ICL	24	М	5.0	18738	171		
10	Diguanylate cyclase	MqR89A	3IGN	25	М	7.5	20256	177		
11	Putative NADPH-quinone reductase	PtR24A	3HA2	26	D	9.5	20509	354		
12	MmoQ (Response regulator)	McR175G	3LJX	27	М	8.8	32032	288		
13	Putative uncharacterized protein	DhR18	3HXL	28	М	9.6	48519	446		
Samples where multiple constructs and crystallographic structures were available										
14	Butativa hydrogonogo	PfR246A (78-226)	3LRX	29	D	11.4	17701	316		
15	Fulative hydrogenase	PfR246A (83-218)	3LYU	30	D	8.4	16321	284		
16	Al-2700 protein	NsR437I	3HIX	31	М	5.3	11760	105		
17	Air3790 protein	NsR437H	3HIX	31	М	6.5	15700	141		
		-								
	Samples where NM	R structures were	available							
18	MKL/myocardin-like protein 1	HR4547E	2KW9 (NMR)	32	D	10.4	8276	75		
19	MKL/myocardin-like protein 1	HR4547E	2KVU (NMR)	33	D	10.4	8276	75		
20	Putative peptidoglycan bound protein (LPXTG motif)	LmR64B	2KVZ (NMR)	34	М	5.0	9712	85		
21	E3 ubiquitin-protein ligase Praja1	HR4710B	2L0B (NMR)	35	M/D	5.6	10297	91		
22	Transcription factor NF-E2 45 kDa subunit	HR4653B	2KZ5 (NMR)	36	М	10.0	10623	91		
23	YIbL protein	GtR34C	2KL1 (NMR)	37	М	11.0	10661	94		
24	Cell surface protein	MvR254A	2L0D (NMR)	38	Tri	5.9	12385	114		
25	Domain of Unknown Function	MaR143A	2KZW (NMR)	39	М	6.6	16312	145		
26	N-terminal domain of protein PG_0361 from <i>P.gingivalis</i>	PgR37A	2KW7 (NMR)	40	М	12.9	17485	157		
	Samples where both crystallogra	aphic and NMR st	ructures were a	availab	le					
27			2KO1 (NMR)	41	D	8.0	10042	176		
۲1	G I P pyropnospnokinase	UTK 148A	3IBW	42	Т	8.0	10042	176		
20	Lip0121 protoin	140112	2KPP (NMR)	43	M/Hep	6.3	12747	114		
20		LKRIIZ	3LD7	44	M	6.3	12747	100		

We have structural data for a large number of the 600 samples that we have SAXS data for (~100 structures)

In an initial study with a subset of the 600 SAXS data sets we looked at 28 structures

Table 1. Samples used for the SAXS analysis are divided into four sets. The first set (1-13) contains 13 proteins, each having crystallographic structures. The second set (14-17) contains 2 proteins with two different constructs of the first having two crystallographic structures and the second a single structure. The third set (18-26) contains 9 proteins, each having an NMR structure. The fourth set (27-28) contains two proteins where both NMR and crystallographic structures are available. The sample name, ID, PDB identifier, reference, the oligomeric solution state characterized on preparation by light scattering and gel filtration, initial concentration (mg/ml), molecular weight (Da) and number of residues are listed. The oligomeric solution s defined in the table as M (monomer), D (dimer), Tri (trimer), T (tetramer), Hep (Heptamer) or a combination. While all the samples have structures deposited in the PDB the majority are as yet unpublished. We are grateful to the authors in the references for the ability to use this structural data at this early stage.

#	Residues observed	dues #Res Rg Dmax Rg rved missing structure structure SAXS		ΔRg	Dmax SAXS	∆ dmax	Porod MW	MW Ratio	SAXS oligomer ¹	Oligomer Assign.	SAXS fit (χ)				
			San	ples where	crystall	ographi	c structu	res were ava	ilable						
1	74	13	13.7	42.0	14.9	1.2	53.2	11.2	7827	0.8	М		4.2		
2	198	198 12 16.6 67.0		19.8	3.2	67.4	0.4	24555	1.8	D	sym	2.6			
3	436	48	22.4	62.3	23.2	0.8	75.3	13.0	50064	3.6 T		sym	1.6		
4	214	38	23.3	81.2 23.6		0.3	82.7	1.5	37348	2.6	D/T*	PDB	2.6		
5	224	34	19.9 57.6		19.8	-0.1	64.2	6.6	28828	2.0	D	PDB	2.2		
6	107	24	19.6	.6 76.3 21.5		1.9	82.0	5.7	11085	0.8	М		6.1		
7	236	12 21.4		64.7	22.2	0.8	76.8	12.1	31410	2.0	D	PDB	3.8		
8	286	12	20.5	63.1	21.1	0.6	71.4	8.3	34786	2.0	D	PDB	2.0		
9	162	162 9 17.6		54.0	18.7 1.1		65.5	11.5	20468	1.1	М		3.7		
10	165 12 1		17.5	58.0	18.5	1.0	65.8	7.8	19069	0.9	М		4.2		
11	336 18		26.1	80.8	26.0	-0.1	89.7	8.9	59937	2.9	D/T*	PDB/sym	1.4		
12	252 36 21.3		21.3	61.5	22.5	1.2	81.9	20.4	37254	1.2	М		2.9		
13	416	30	28.5	95.0	27.6	-0.9	98.5	3.5	40027	0.8	М		1.4		
	-	Sam	ples where	multiple cor	nstructs	and cry	stallogra	phic structur	es were av	vailable	<u>}</u>				
14	272	44	20.8	59.6	21.1	0.3	69.2	9.6	30670	1.9	D	PDB	1.9		
15	258	26	21.1	61.8	22.0	0.9	79.7	17.9	32657	2.0	D	PDB	1.8		
16	93	12	18.0	59.5	18.2	0.2	64.7	5.2	15875	1.3	D2	PDB	1.7		
17 93		48	20.4	75.0	20.8	0.4	73.0	-2.0	15920	1.0	D1	PDB	2.5		
			1	Samples v	vhere N	MR stru	ctures we	ere available	1			-			
18	75	0	22.5	122.4	16.8	-0.9	58.4	-64.0	6771	0.8	М		4.7		
19	75	0	17.7	94.4	16.5	-1.2	58.4	-36.0	6771 0.8		М		1.4		
20	85	0	19.0	80.8	18.7	-0.3	68.0	-12.8	9724	1.0	М		1.7		
21	91	0	16.4	71.0	15.9	-0.5	59.6	-11.4	7862	0.8	М		1.5		
22	91	0	22.3	123.1	19.6	-2.7	68.0	-55.1	10762	1.0	М		1.6		
23	87	7	14.3	55.8	14.5	0.2	49.7	-6.1	8479	0.8	М		1.4		
24	114	0	16.5	67.8	19.6	3.1	66.6	-1.2	12609	1.0	М		5.9		
25	145	0	49.0	325.5	26.6	-22.4	94.7	-230.8	15386	0.9	М		7.4		
26	157	0	19.8	67.5	17.5	-2.3	60.6	-6.9	15238	0.9	М		2.1		
	1		Samples wi	here both cr	ystallog	raphic a	and NMR	structures w	ere availat	ble			1		
27*	L								22589	2.2	D				
	158	18	18.1	52.5	19.0	0.9	68.3	15.8				PDB	2.4		
28*	114	0	18.5	104.4	18.5	0.0	68.2	-36.2	10721	0.8	М		2.3		
	87	13	14.8	44.1	18.4	3.6	68.2	24.1					7.4		

Table 2. A summary of structural (crystallography and NMR) and SAXS results. The sample # refers to the identical number in Table 1. The number of unresolved residues in the structure (mainly crystallographic) is listed together with the R_g and D_{max} (in Å) determined from the available structure. The R_g and D_{max} from the SAXS data are shown together with the difference from the available structural information. The molecular weight (in Da) calculated from a Porod analysis is listed along with the ratio of this weight with that derived initially from mass spectrometry in table 1. Finally the SAXS determined oligomer, (Monomer, Dimer or Tetramer), the relationship to the available structure and the χ of the fit are listed. A special case is described below for samples 16 and 17. Further details are given in the text.

Comparing X-ray structures

Comparing X-ray structures

Solution oligomer different than that suggested by biological unit in the PDB.

SAXS has added to the structural knowledge.

What is biologically correct, crystal or solution?

2izz from the PDB (5 chains in PDB)

Crystal packing artifact

Another story

3gt0 from the PDB

Solution envelope from BcR38B-21.20-SeMa-Gf (3gt0)

~165A

Correct position for 5th chain

Biological unit based on 2izz and SAXS SAXS can identify a solution oligomer that may be different from the crystallographic one.

Identification of mixtures : If you know the structure you can identify an oligomer mixture

Analyzed using the program Oligomer: http://www.embl-hamburg.de/biosaxs/manual_oligomer.html

Alternative constructs

Absolute chi's depend on error model. Relative chi's can distinguish right from wrong.

Alternative constructs

Absolute chi's depend on error model. Relative chi's can distinguish right from wrong.

SAXS is a simple experiment but a powerful one

It is easily interpreted but it has limitations

Diguanylate cyclase

Sensory Box/GGDEF Protein Family

MucBP Domain of PEPE_0118

Biological unit was thought to be a dimer from crystallography.

Solution state is not.

The biological state is not necessarily the solution or crystallographic state.

In this case the asymmetry allowed

Size matters

13 missing residues

SAXS is not just about shape of the envelope but also it's overall size. The envelope produced reflects the size of the sample.

SAXS is complementary to NMR

Comparing NMR structures

Protein of Unknown Function

"Core" domain seems to be in agreement, but disorded region highly incompatible.

> Which is correct, NMR or SAXS?

SAXS is complementary to Crystallography and NMR

Comparing NMR and X-ray structures

How robust is it?

Your answer will depend on your age and experience.

Key developments:

Area	Detail	Year					
Algorithm development.	Spherical harmonics/Monte Carlo	1970's/1990's					
Synchrotron sources.	Second and third generation	1980's					
Low noise rapid detectors.	CCD's, Pixel Arrays	1990's					
Computational power	Machines and software	2000's					

SAXS today benefits from each of these developments.

Samples with crystallographic structure

Samples with

In all cases where we have:

(1) structural information and(2) good SAXS data

the reconstruction has always accurately represented the envelope of the structure

	Samples where crystallographic structures were available																													
1	4.2	15.4	24.5		14.4	5.2	16.3	19.3	7.8	10.0		17.5	23.6	16.6	16.6	9.5		7.1	3.7	3.0	1.4	6.7	3.9	1.7	10.4	9.5	12.2	6.7	4.2	3.5
2	32.1	2.6	13.7		3.1	20.6	1.5	5.2	6.8	5.6		3.0	17.4	1.6	1.6	8.9		32.2	21.6	28.3	33.1	19.5	29.2	31.7	31.9	16.7	8.6	5.8	18.2	26.8
3	33.8	7.3	1.6		9.5	26.6	5.9	2.5	17.2	15.6		4.9	9.0	5.5	5.5	17.4		31.2	25.9	30.0	33.6	24.7	32.3	32.7	29.9	25.0	20.0	17.6	25.5	31.0
4	76.5	10.6	16.5	2.6	12.2	56.1	6.1	12.0	30.5	26.5		10.3	16.0	6.9	6.8	27.5		72.8	55.2	66.9	76.7	50.7	71.7	74.4	67.0	50.5	36.9	31.0	52.0	68.0
5	74.4	3.7	20.1		2.2	56.5	7.5	3.8	14.9	9.6		2.7	31.9	5.9	6.3	27.5		82.0	59.0	70.2	78.7	55.0	69.1	75.8	73.9	41.2	23.7	15.6	51.4	63.8
6	18.3	20.5	32.3		20.5	6.1	20.5	25.9	17.2	17.8		23.1	25.7	20.9	21.0	7.1		5.8	3.7	6.4	11.8	4.2	16.9	11.2	6.7	19.1	18.9	16.4	8.5	17.2
7	57.6	6.5	13.1		8.9	39.8	3.8	10.5	22.0	18.8		7.0	14.4	4.9	4.5	18.3		51.0	38.7	48.6	56.7	34.2	53.3	55.2	47.7	37.4	26.7	22.1	36.2	50.8
8	34.4	3.8	5.1		2.7	24.5	4.2	2.0	10.1	8.2		3.6	12.9	3.6	3.7	12.3		32.1	24.4	29.8	34.6	21.9	31.7	33.7	30.9	20.3	13.9	10.9	22.2	29.9
9	18.9	4.1	18.1		3.1	10.7	4.8	7.9	3.7	3.6		5.9	18.6	4.5	4.8	7.2		21.2	12.7	16.0	19.5	11.7	16.0	18.7	20.0	7.1	3.4	3.4	8.1	14.5
10	20.4	4.9	22.4		3.0	12.2	5.8	10.4	4.1	4.2		7.5	20.8	5.7	6.1	7.9		25.5	15.1	19.3	22.2	13.7	17.3	21.2	21.9	8.0	3.5	3.5	9.5	15.4
11	94.2	37.1	19.8		41.6	77.8	31.1	26.3	59.4	56.0	3.0	31.0	15.7	30.8	30.7	54.9		84.3	75.8	86.4	93.8	71.1	91.1	92.2	78.1	75.8	65.2	60.0	75.6	88.4
12	33.2	3.2	4.2		4.6	23.8	2.7	3.1	12.8	10.9		2.9	9.0	2.5	2.5	11.9		29.2	23.3	28.9	33.3	21.0	31.3	32.2	28.1	21.9	15.9	13.1	22.4	29.5
13	26.4	9.3	7.9		10.4	19.2	7.5	8.0	15.1	14.1		8.3	1.4	7.7	7.6	11.1		20.0	18.0	22.4	25.7	15.8	25.2	25.0	18.5	20.1	16.6	15.2	18.6	24.3
Samples where multiple constructs and crystallographic structures were available																														
14	41.6	3.5	9.1		4.6	28.0	1.7	6.0	13.0	10.6		3.9	13.9	1.9	1.8	12.0		37.7	27.7	35.4	41.6	24.6	38.3	40.2	37.5	25.1	16.8	13.2	25.4	36.1
15	19.3	2.5	4.1		2.7	12.8	1.7	3.0	6.8	5.8		2.5	5.5	1.9	1.8	5.2		16.3	12.4	16.2	19.1	10.9	18.0	18.5	16.4	12.2	8.4	6.9	11.9	16.9
16	8.9	3.8	12.5		3.2	4.3	4.5	7.1	3.0	2.8		5.6	12.0	4.7	4.8	1.7		10.5	5.8	6.5	8.5	5.3	7.3	8.1	8.6	4.2	2.5	2.6	2.9	6.5
17	11.8	9.7	21.2		9.2	3.4	10.1	14.4	7.6	7.5		12.2	18.1	10.3	10.4	2.5	2.1	10.8	5.3	5.6	9.8	3.7	10.0	9.7	8.6	8.8	7.8	7.1	2.3	9.3
40											San	nples	wher		/IR st	ructu	res v	vere	avail	able										
18	7.0	16.5	26.3		15.6	2.0	17.1	20.6	9.8	11.5		18.6	22.1	17.4	17.5	7.9		4.7	1.4	1.3	2.3	3.8	6.6	2.0	2.7	11.4	13.6	8.7	4.8	6.3
20	10.2	13.0	22.8		12.6	1.9	13.5	17.2	9.2	9.8		15.2	19.4	13.7	13.8	4.2		6.3	2.0	1.7	6.0	2.2	9.1	5.5	5.5	10.7	11.1	8.5	3.2	9.3
21	5.2	14.8	24.3		13.7	3.4	15.6	18.6	7.6	9.5		16.9	21.8	15.8	16.0	7.9	1	5.4	2.4	1.8	1.5	4.6	4.7	1.7	5.7	9.0	11.7	6.6 5.0	3.5	4.5
22	0.3	0.0	12.0		0.4	1.0	10.0	0.0	0.0 2 7	5.3 5.6		115	10.1	0.9	0.9	1.0		3.9	1.4 5.7	1.0	4.3	1.0 7.1	0.0	4.0	3.Z	5.9 4 4	5.7 7.2	5.0	1.0	0.0 1 0
23	7.0	63	10.9		0.9 6 1	1.0	6.4	9.0	5.7	5.0		7.6	10.2	6.6	67	0.1		6.0	2.0	0.0 4.2	5.0	2.0	6.0	4.3 5.0	52	4.1 6.4	7.3 5.6	5.0	4.5	1.0 6.6
24	10 2	15.9	24.9		16.2	1.0 7.0	0.4 15 2	0.9	5.7 15.0	5.0 15.7		17.6	10.2	0.0 15 5	0.7 15 5	6.1		6.3	2.0	4.2	1/ 2	2.0	17.0	12.9	5.Z	17.0	5.0 15.7	0.4 15 2	2.0	16.9
20	16.3	8.7	24.0		10.2 4 Q	13.0	10.2	12.7	10.9	23	1	11.0	24.8	10.3	10.8	11.8		26.4	16.8	9.0 18 1	14.2	15.0	13.5	18.0	21 Q	21	3.1	2 9	0.5 10 Q	10.0
20	10.4	0.7	20.0		4.5	10.0	10.0	Sa	ample	es wh	l nere l	both (crysta	lloar	aphic	and	NMF	R stri	Ictur	es we	are a	vaila	ble	10.3	21.3	2.1	0.1	2.0	10.3	11.5
27	13.9	2.4	10.2		2.5	8.3	2.5	4.0	2.7	2.5		3.0	10.7	2.2	2.3	4.8		14.2	9.0	10.5	13.6	8.1	12.0	13.3	12.2	5.8	2.5	2.4	6.4	11.1
28	8.3	13.1	23.9		12.2	1.7	13.6	17.5	7.6	8.7		15.4	19.5	13.9	14.0	3.8		6.1	2.0	1.8	4.5	1.8	7.3	4.0	3.1	9.1	10.3	6.9	2.3	7.4

How robust is it?

There are several metrics that can be used to determine the quality of data and correctness of the envelope.

How robust is it?

If you already have some structural knowledge it us very robust.

But what if you don't?

One example, comparing Structural Blast Results

The envelope of the unknown structure confirms structural homology to sequence homology

Other examples with SAXS

- One can think of many experiments where an envelope would be useful information.
- For example, by using multiple constructs, components of a structure could be put in their relative 3D environment.
- Mutational studies on the predicted surfaces of complex contacts could be structurally tested.
- Many, many applications.

Other examples with SAXS

- SAXS can be used to analyze natively unfolded proteins.
- It can identify aggregation as a function of biochemical conditions.
- It can measure the B₂₂, the attraction/repulsion of protein samples.
- It can characterize quantitatively how well folded a sample is (and as a function of biochemical conditions)
- It can be used in a time resolved manner (at least with a synchrotron source).

The End (almost)

Take home message

- With good data, SAXS is complementary to X-ray crystallography, NMR, or other structural methods.
- It builds on the information other techniques provide.
- Without complementary structural information SAXS provides basic data but envelope reconstruction cannot be completely validated (although our success is pretty good).
- It can be used on it's own as a hypothesis generator and, with careful experimental design, to test a hypothesis.
- Remember it's a low resolution technique.

Acknowledgements

Hauptman-Woodward Medical Research Institute Thomas Grant, Joseph Luft, Raymond Nagel, Elizabeth Snell, Jennifer Wolfley and George DeTitta University of Rochester Elizabeth Grayhack, Eric Phizicky, and staff Stanford Synchrotron Radiation Lightsource Hiro Tsuruta, Aina Cohen, Mike Soltis, and the beamline staff University of Oxford Yoonjoo Choi and Charlotte Deane

> Support and Funding NIH, NSF and DoD support to Edward Snell

Thank you and questions?

esnell@hwi.buffalo.edu