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Optimist
 (the glass is half full)

Pessimist
 (the glass is half empty)

Crystallographer
(the glass is completely full)

Pessimists, Optimists, and Crystallographers

Water

Air

Consider a glass of water



Only 
approximately 

11% of the 
proteins we 

target for 
crystallography 

yield a 
crystallographic 

structure.

At least 99.8%  of crystallization experiments produce an outcome other 
than crystallization.



Crystallography Requires Crystals

HR9027A.007



No crystal …

No crystallography ….

No crystallographer ….

(Change careers  to cryo electron microscopy 
– a complentary technique)



Fantasy



Crystallization theory is well established

The fundamental theory around the protein phase diagram is well understood. 

The most efficient method to probe it is chemically screening different conditions

(Dumetz et al., 2009)



The Crystallization Screening Center at the Hauptman-
Woodward Medical Research Institute

Since February of 2000 the High Throughput Crystallization Center has been 
screening potential crystallization conditions as a high-throughput service

The HTS lab screens samples against three types of cocktails:

1. Buffered salt solutions varying pH, anion and cation and salt concentrations
2. Buffered PEG and salt, varying pH, PEG molecular weight and concentration 

and anion and cation type
3. Almost the entire Hampton Research Screening catalog.

 The HTSlab has investigated the crystallization properties of over 19,000 
individual proteins  archiving approximately 180 million images of 
crystallization experiments.

All data and in many cases, dead volume recovered samples are available



Simplified phase diagram for crystallization



Minimize sample volume



High-throughput crystallization is easy

Success rate for soluble protein to 
structure is ~20%. But, based on 
the number of conditions 
screened, 99.8% of everything 
you try is failure.



13,824 images generated for 

each experimental screenUV-TPEF and SHG images at 4 weeks



Good at finding 
crystals

Based on data from 
NESG from 144 out of 
328 targets with one or 
more verified hits



Many outcomes

0.9 mm



Can we automate the classification 
of outcomes?

Training set:
• Set 1: ~150,000 images (96 

proteins) classified by eight people 
in a set of categories (crystal, clear, 
precipitate, skin, phase separation, 
other, and combinations) with a 
minimum of three people looking at 
each image.

• Set 2: ~420,000 images (269 
proteins) classified as crystal or no 
crystal by eight people, a single 
person looking at each image.



Testing the humans with the training set.

• Extra layer of experiment added 
without human classifier 
knowledge.

• The same set of images was 
included at the start, half way 
through, and at the end of the 
study.

• All human classifiers were given 
this data.

• Agreement between same 
classifier and same image was at 
maximum 80% and often a lot less.

• Humans cannot agree even with 
themselves.

• Training sets were trimmed so that 
training images had an agreement 
with at least two classifiers for 
training set 1.



Using the training set for classification of other 
images

• Worldwide community grid with random tree classifier used, a minimum of 

five year run time to process all available images.

• Very good results within the training and test set, but less so outside of that. 

Results were not useable.

• Training set also provided to other groups, several still working on 

automated analysis. Test set kept for validation.

• Several recoding efforts succeeded in taking the five year run time down to 

one month.

• Strategy was a comprehensive feature extractor followed by supervised 

learning. Classifier was unique to our images.

• Results in a word, unsuccessful.



Looking at structural space 
rather than crystal images



Big data in X-ray crystallization is old data …

Old data ported to web-based interface with API 
functionality. Storage can be upgraded in the background



Molecular fingerprints are 
representations of chemical structures 
designed to capture molecular activity.

We use atomic properties and a SMILES 
string to capture six components:

1. Atomic number
2. Number of directly-bonded neighbors
3. Number of attached hydrogens
4. The atomic charge
5. The atomic mass
6. If the atom is contained in a ring

These components are calculated for the 
whole molecule in an iterative manner 
starting from an arbitrary non-hydrogen.

This information is 
stored in single 
integer with bits set 
depending on the 
properties.

Molecular Fingerprints

Rodgers and Hahn, J. Chem. Inf. Model. 2010, 
50, 742-754

Switch gears and look at the chemistry 
instead of pictures

Cocktail fingerprints combine the 
molecular fingerprints and account for 
the molarity of each in the crystallization 
cocktail.



The Dissimilarity Measure Over the Whole Screen

Aspects of the screen design 
are clearly seen

Salt based screens

PEG based conditions sampling 
different molecular weight PEGS 
at two concentrations

Hampton Research PEG/Ion screen

Hampton Research Silver Bullets

The scale is normalized to the most 
dissimilar chemical conditions Cocktail ID number

Adapted from Newman J, Fazio VJ, Lawson B, Peat TS (2010) Crystal Growth & Design 10: 2785-2792



Automatic Clustering of the Results

PEG based 
conditions

Salts with 
different 
anions and 
cations

Hierarchical 
clustering using a 
default max cophenetic 
distance cutoff of one 
standard deviation 
identified 28 clusters. 



PDB ID 3DMA as deposited in the PDB

Look at an example already in the PDB



New information representations

Cluster 20, PEG based, only 3 hits

Conditions showing 
crystal hits are given 
for each cluster 
along with the total 
number of cocktails 
in that cluster.

A selection of cocktails 
that showed hits are 
listed on the outside of 
the dendogram. For 
clarity not all hits are 
shown



Cluster Total Hits % hits Sodium % Potassium % Phosphate %

All cocktails

1536 70 4.5 47 24 16

All crystal

70 70 100 70 27 30

Clusters with crystals

C13 108 19 17.6 73 72 100

C14 106 15 14.2 65 21 0

C12 57 11 19.3 16 2 0

C8 45 7 15.6 100 2 2

C11 42 5 11.9 45 0 0

C17 28 4 14.3 68 11 0

C20 965 3 0.3 41 23 13

C15 19 3 15.8 58 0 0

C23 8 1 12.5 100 0 0

C4 12 1 8.3 83 25 0

C10 12 1 8.3 75 25 0

Cluster 13 proved interesting in that sodium is present 
in 73% of the conditions versus 47% for the 1536 
condition screen overall, potassium is present in 72% 
of the conditions verses 24% overall and finally 
phosphate is present in 100% of the conditions versus 
16% overall. This suggests a strong influence of these 
components in crystallization in this cluster. 





A Revised Structure Illustrating Mechanism

PDB 4PY9 Reduced the R and Rfree from 22.3% and 25.9% to 20.7% and 24.3%

The putative active site has 
features that are consistent 
with active sites of other 
phosphatases which are 
involved in binding the 
phosphoryl moieties of
nucleotide triphosphates



Potential to understand phase diagram in terms 
of X-ray diffraction properties

Clustering samples the phase diagram

Identifies
a pipette 

error



Using historic data to identify patterns.

Simple patterns can be found from a sub-set of historical data. In this case samples 
likely to be crystallized via charge (salts) versus crowding (e.g. PEGs) could be 
identified.

Three classes of protein 
in data set:
• Crystallizable by PEG
• Crystallizable by salt
• Crystallizable by very 

high salt concentration
The last class corresponded 
to salt crystals!



Complementary analysis (after the fact)

• Small Angle X-ray Scattering

• Possible in a high-throughput manner but not as 

high-throughput as crystallization screening.

• Characterizes sample in term of globularity, 

flexibility, and dynamics.

• Provides oligomer information.

• Particle induced emission of X-rays

• Collaboration with Elspeth Garman and Geoff 

Grimes in the UK who developed high-throughput 

processes.

• Atomic technique – can use ‘dead’ protein.

• Quantitative technique to accurately identify and 

measure heavy atoms. 

Shameless plug



The energy of an X-ray emitted when an atomic electron undergoes an energy 
transition between its shell and a vacant electron site in a lower energy shell (e.g. for 
an M to L shell transition, sulphur gives a 2.3 keV X-ray) gives an unambiguous 
identification of atoms.

Emission of the characteristic X-rays from a sample can be induced by an incident 
beam of high energy protons (Particle Induced X-ray Emission: PIXE).

Particle induced X-ray emission

Collaboration with Elspeth Garman and Geoffrey Grime



The experiment

• 34 metalloprotein samples chosen from a set of samples successfully 

crystallized in the High-Throughput Crystallization Screening Center.

• All were SeMet samples.

• All produced crystals and a had structural model deposited in the PDB.

• PIXE analysis was carried out on each sample.

• The samples used were split into four groups based on PIXE analysis

• Those where the PDB was inconsistent with the PIXE data

• Those where extra metals were seen in the PIXE data (but not present 

in the PDB)

• Those that were consistent with the PIXE data.

• Those that produced no signal.



PDB ID Gene Residues
Metal 

in PDB

Metals in 

PIXE 

(>3xLOD)

Potential 

metals in 

PIXE (1-

3xLOD)

Crystallization conditions

PDB inconsistent with PIXE 

1 3LV4 BiR14 456 Ca - Ca, Mn 18% PEG 3350, 0.2M Ca acetate, 0.1M MES, pH 6.15

2 3HIX NsR437I 106 Mn - - 20% PEG 4000, 0.1M Mn chloride, 0.1M MES, pH 6.0

3 3HLY
SnR135

D
161 Ca - Ca 20% PEG 8000, 0.1M Ca acetate, 0.1M MES, pH 6.0

4 3DCP LmR141 283 Fe/Zn

Ca (3.3), Mn 

(0.5), Fe 

(1.2), Co 

(1.2)

Zn
15% PEG 8000, 0.17 M sodium acetate, 0.01 M L-

cysteine, 0.1 M MES pH 6.2

5 3JSR NsR236 119 K - Ca 8.64 M K acetate, 0.1 M TAPS, pH 9.0

6 3ILM
NsR437

H
141 Mn - Fe, Co 20% PEG 1000, 0.1M Mn chloride, 0.1M MES, pH 6.0

7 3I24 SoR237 137 Na
Co (0.7), Zn 

(0.7)
Fe, Ni NaCl 200 mM, MES PH6, PEG 3350 20%, pH 6.15

8 3GGL BtR324A 169 Zn -
Ca, Mn, 

Fe*
0.75M Mg Formate, 0.1M Bis-Tris, pH 7.0

9 3KB1 GR157 262 Zn - Co
100 mM Na Acetate (pH 4.6), 30% MPD, and 200 mM 

NaCl.

Model in the PDB containing a metal from the crystallization cocktail and not protein 

Model in the PDB containing an incorrect metal 

Protein A



PDB ID Gene Residues
Metal 

in PDB

Metals in 

PIXE 

(>3xLOD)

Potential 

metals in 

PIXE (1-

3xLOD)

Crystallization conditions

PDB inconsistent with PIXE 

1 3LV4 BiR14 456 Ca - Ca, Mn 18% PEG 3350, 0.2M Ca acetate, 0.1M MES, pH 6.15

2 3HIX NsR437I 106 Mn - - 20% PEG 4000, 0.1M Mn chloride, 0.1M MES, pH 6.0

3 3HLY
SnR135

D
161 Ca - Ca 20% PEG 8000, 0.1M Ca acetate, 0.1M MES, pH 6.0

4 3DCP LmR141 283 Fe/Zn

Ca (3.3), Mn 

(0.5), Fe 

(1.2), Co 

(1.2)

Zn
15% PEG 8000, 0.17 M sodium acetate, 0.01 M L-

cysteine, 0.1 M MES pH 6.2

5 3JSR NsR236 119 K - Ca 8.64 M K acetate, 0.1 M TAPS, pH 9.0

6 3ILM
NsR437

H
141 Mn - Fe, Co 20% PEG 1000, 0.1M Mn chloride, 0.1M MES, pH 6.0

7 3I24 SoR237 137 Na
Co (0.7), Zn 

(0.7)
Fe, Ni NaCl 200 mM, MES PH6, PEG 3350 20%, pH 6.15

8 3GGL BtR324A 169 Zn -
Ca, Mn, 

Fe*
0.75M Mg Formate, 0.1M Bis-Tris, pH 7.0

9 3KB1 GR157 262 Zn - Co
100 mM Na Acetate (pH 4.6), 30% MPD, and 200 mM 

NaCl.

Model in the PDB containing a metal from the crystallization cocktail and not protein 

Model in the PDB containing an incorrect metal 

Protein A



PDB ID Gene Residues
Metal 

in PDB

Metals in 

PIXE 

(>3xLOD)

Potential 

metals in 

PIXE (1-

3xLOD)

Crystallization conditions

Extra metals present in PIXE 

1 3LMC MuR16 210 Fe/Zn

Fe (0.6), Co 

(0.9), Ni 

(0.4), Zn (0.7)

-
0.1 M Na2MoO4*2H2O, 0.1 M Bis-Tris propane, 12% 

PEG 20000

2 3K2Q MqR88 420 Na◆ Ca (7.1) Fe 0.1 M Na2MoO4, 0.1 M Tris, pH 8.0, 20% PEG 8000

3 3LM8 SR677 222 Mg◆
Ca (0.7), Fe 

(0.05)
K/Br

0.1 M KH2PO4, 0.1 M NaC2H3O2, pH 5.0, 12% PEG 

20000

4 3E5Z DrR130 296 Mg◆ Ca* - 0.1 M NaCl, 0.1 M TAPS, pH 9.0, 18% PEG 3350, MgCl2

5 3HNM BtR319D 172 Mg◆ Ca (1.74) - None given

6 3DEV ShR87 320 Mg◆
Mn (0.8), Fe 

(0.7)
-

0.1 M Na citrate, pH 5.2, 1.25 M Li2SO4, 0.5 M 

(NH4)2SO4

7 3IHK SmR83 218 Mg◆
Ca (0.5), Fe 

(0.1)
Ti, Co, Cu 0.1 M LiCl2, 0.1 M Bis-Tris, pH 5.5, 18% PEG 3350

8 3KB4 NsR141 225 Mg◆
Mn (0.2), Fe 

(0.4), Ni (0.4)
Co 0.1 M citric acid, pH 5.0, 1.6 M (NH4)2SO4

9 3E48 ZR319 289 Mg◆ - Ca, Fe, Cu 0.1 M Tris-HCl, pH 9.1, 18% PEG 3350, 0.1 M  MgSO4

Model in the PDB containing an extra misidentified metal 



• Of the 34 samples analyzed, 9 were inconsistent with the PDB 

results, 9 had extra metals present, 18 were consistent, and 2 

were unsuitable for analysis due to low protein concentration on 

the sample. 

• In total, 18 of the 32 analyzable samples (56%) were not correctly 

or fully described in the PDB deposition. 





Wavelength 0.97931

f' f'' f'' n_Se f'' n_Zn f'' n_Co f'' n_Fe

Se -8.6571 3.843 1.000

Zn -0.3843 2.477 0.645 1.000

Co 0.1697 1.715 0.446 0.692 1.000

Fe 0.2421 1.500 0.390 0.606 0.875 1.000

Mn 0.2905 1.303 0.339 0.526 0.760 0.869

Ca 0.2938 0.565 0.147 0.228 0.329 0.376

O 0.0163 0.012 0.003 0.005 0.007 0.008
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Wavelength 0.97931

f' f'' f'' n_Se f'' n_Zn f'' n_Co f'' n_Fe

Se -8.6571 3.843 1.000

Zn -0.3843 2.477 0.645 1.000

Co 0.1697 1.715 0.446 0.692 1.000

Fe 0.2421 1.500 0.390 0.606 0.875 1.000

Mn 0.2905 1.303 0.339 0.526 0.760 0.869

Ca 0.2938 0.565 0.147 0.228 0.329 0.376

O 0.0163 0.012 0.003 0.005 0.007 0.008

Chain A 9.59 1.00

6.83 0.71

6.81 0.71

Chain B 8.42 1.00

7.60 0.90

7.50 0.89

Chain C 9.11 1.00

7.70 0.85

6.28 0.69



PO4 Fe Metals in new structure, Fe, Mn, 
Co cluster

Rwork Rfree RMS(bonds) RMS(angles) Clash Ram-fav Ram-out Rot-out

PDB

0.193 0.212 0.008 1.2 11.97 96.07 0.61

Re-refined

0.1847 0.2143 0.0031 0.744 1.9 96.81 0.61 2.82

Metal Metals replaced with Co, Fe and Mn, PO4 added in active site. Ca added in places

15.60 18.50



June 20th 2018



Machine Automated Recognition of 
Crystallization Outcome 

• A collaboration with Duke University, GalaxoSmithKline Inc, Googe Brain, the 
University of Buffalo, CSIRO, University of York, Bristol-Myers Squibb, Merck,  
Abbvie and others (growing effort).

• Current training set of 493,214 human classified images limited to crystal, 
clear, precipitate, and other.

• Random set of 50,284 used for testing.
• Multiple image types

• Different growth geometries – microbatch under oil and vapor diffusion
• In house designed imagers, Rigaku, and Formulatrix systems
• A human can interpret images from any imager, why can’t an automatic 

procedure.

Revisiting image analysis



Some details

• Images classified by separate groups in multiple categories.

• Reclassified to four catagories, crystal, precipitate, clear or other

• Classifier is a deep Convolutional Neural Network with an Inception-v3 
architecture.

• Images are reduced to 599x599 pixel images which are further compressed to 
299x299 pixels.

• Training data taken from images with random 599x599 patches treated to 
randomize brightness, saturation, hue, and contrast with random flipping left or 
right.

• Model was implemented in TensorFlow running across 50 Nvidia K80 GPUs.

• Training took 19 hours on 100 million images.

• Analysis for a new image is almost real time.



True 
label

Predictions

Crystals Precipitate Clear Other

Crystals 91.0% 5.8% 1.7% 1.5%

Precipitate 0.8% 96.1% 2.3% 0.7%

Clear 0.2% 1.8% 97.9% 0.2%

Other 4.8% 19.7% 5.9% 69.6%

Remember, humans at best have a 80% success rate.



Cocktail 349, 0.93 probability of a crystal.

Cocktail 1510, 0.93 probability of a 
crystal. 

Cocktail 1492, 0.93 probability of a 
crystal (presence not clear by eye, 
questionable identification). 

0.9 mm

Sample X09664 - Reading 2/19/2008 – Week 2

Crystals clearly identified (shown enlarged)

?



Cocktail 1213

0.92 probability of crystals

Cocktail 147

0.92 probability of crystals

Cocktail 1009

0.92 probability of crystals

Cocktail 715

0.92 probability of crystals

Cocktail 907

0.90 probability of crystals

Cocktail 479

0.91 probability of crystals

Yes

Yes

Yes

Yes Yes

Possible

Sample X09664 - Reading 2/19/2008 – Week 2



Cocktail 1255, 0.92 probability of a 
crystal (larger features in drop but also
small crystals).

Cocktail 1314, 0.93 probability of a 
crystal. 

Cocktail 1332, 0.92 probability of 
a crystal. 

0.9 mm

Sample X09664 - Reading 2/12/2008 – Week 1

Crystals clearly identified (shown enlarged)



Cocktail 1416

0.91 probability of crystals

Cocktail 478

0.91 probability of crystals

Cocktail 988

0.91 probability of crystals

Cocktail 977

0.91 probability of crystals

Cocktail 314

0.90 probability of crystals

Cocktail 1267

0.90 probability of crystals

Possible*

Yes

Yes

Possible Yes

Yes

Sample X09664 - Reading 2/12/2008 – Week 1

For 1416 – Autoscoring has possibly detected small air bubbles but small crystals are also present



Big data needed

• Our data, 19,000 proteins, visual images at day 1 and 
weeks 1 through 6 (7 images total). UV two photon 
fluorescence and SONICC for many samples. Over 200 
million data points – bothsuccess and failure.

• Biological Macromolecule Crystallization Database – 
crystallization conditions for ~100,000 proteins in PDB. 
No data on failure.

• Other large scale crystallization centers.

• The pharmaceutical industry.

• A robust image classification capability.



What if the visible images are ambiguous?

Do any of these wells contain protein crystals?

Visible UV-TPEF SHG
Initial crystallization conditions for 
structure of botulinum neurotoxin  
Allen Lab BU and Janda Lab Scripps 
JACS 2017; 139



Can we learn anything?

• Our experience with the manual analysis of images 
indicate that there is information available that is 
pertinent to structure.

• We don’t know how much or if predictive patterns 
may exist.

• If they do, they may be complex.

• Do we have enough information to find signals in 
the noise?

• How can we get more?

Our goal is to link data representation tools with automatic image classification to 
obtain new information 



-ray

Conclusion

Some truth may be out there



esnell@hwi.buffalo.edu

Thank you and questions?
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